
9inch Audit
July 2023

By CoinFabrik

v202306



9inch Audit
July 2023

Executive Summary 4
Scope 4
Contracts Origins 4

Upstream Sources 4
Audited Files Origin 5

Uniswap-Based Contracts 5
Uniswap-based Dependencies 6
PancakeSwap-Based Contracts 9
PancakeSwap-Based Dependencies 10
No-Upstream Contracts 11
No-Upstream Dependencies 11

Methodology 11
Findings 12

Severity Classification 13
Issues Status 13
Critical Severity Issues 13

CR-01 Infinite Vote Creation 13
CR-02 Price Decrease DOS 14

Medium Severity Issues 15
ME-01 Needs Rewrite 15
ME-02 Possible Reentrancy Attacks in TokenFlexiblePool 16
ME-03 Solidity Pragmas 17
ME-04 Possible Reentrancy Attacks in TokenPool 17

Minor Severity Issues 18
MI-01 No Zero Checks 18
MI-02 Excessive Allowance 18
MI-03 No Front-Running Protection 18
MI-04 Fee-Avoidance 19

Other Considerations 19
Centralization 19

BBC 19
TokenPool 20
TokenFlexiblePool 20

Upgrades 20
Privileged Roles 20

BBC 20
TokenFlexiblePool 21

Page 2 of 23



9inch Audit
July 2023

TokenPool 21
Changelog 23

Page 3 of 23



9inch Audit
July 2023

Executive Summary
CoinFabrik was asked to audit the contracts for the 9Inch project.

During this audit we found two critical issues, four medium issues and several minor issues.

Scope
The audited files are from the git repository located at
https://github.com/9inchswap/9InchSM. The audit is based on the commit
12bfd42b293417dd32eae6f0d3e1ee93d6125c55.

The scope for this audit includes and is limited to the following files and its dependencies in
the audited commit. The audit does not include dependencies outside the repository:

● contracts/farm/MasterChefV2.sol

● contracts/pool/SmartChefFactory.sol

● contracts/pool/TokenFlexiblePool.sol

● contracts/pool/TokenPool.sol

● contracts/swap/NineInchFactory.sol

● contracts/swap/NineInchPair.sol

● contracts/swap/NineInchRouter.sol

● contracts/tokens/BBC.sol

● contracts/tokens/NineInch.sol

See the Audited Files Origin section for descriptions of the audited files.

No other files in this repository were audited. The rest of its dependencies are assumed to
work according to their documentation. Also, no tests were reviewed for this audit.

Contracts Origins
Most of the contracts included in this audit are based upon contracts in the UniswapV2 and
PancakeSwap projects. As part of this audit, and based on the information provided by the
development team, we tracked down the origin we believe those files have. We also
documented in this section how each file differs from the upstream version.

Upstream Sources
These are the sources where the upstream code was obtained from.

Git commits:
● v2-core:

Page 4 of 23

https://github.com/9inchswap/9InchSM


9inch Audit
July 2023

○ Repository: https://github.com/Uniswap/v2-core.git
○ Commit: ee547b17853e71ed4e0101ccfd52e70d5acded58 (master top)

● v2-periphery:
○ Repository https://github.com/Uniswap/v2-periphery.git
○ Commit: 0335e8f7e1bd1e8d8329fd300aea2ef2f36dd19f (master top)

● solidity-lib:
○ Repository: https://github.com/Uniswap/solidity-lib.git
○ Commit: c01640b0f0f1d8a85cba8de378cc48469fcfd9a6 (master top)

● governance:
○ Repository: https://github.com/Uniswap/governance.git
○ Commit: eabd8c71ad01f61fb54ed6945162021ee419998e (master top)

● pancakeswap-contracts:
○ Repository: https://github.com/pancakeswap/pancake-smart-contracts.git
○ Commit: d8f55093a43a7e8913f7730cfff3589a46f5c014 (master top)

Deployed contracts:
● masterchef:

https://bscscan.com/address/0xa5f8C5Dbd5F286960b9d90548680aE5ebFf07652
#code

● cakepool:
https://bscscan.com/address/0x45c54210128a065de780c4b0df3d16664f7f859e#c
ode

Audited Files Origin

Uniswap-Based Contracts

contracts/swap/NineInchERC20.sol
● Upstream source: v2-core
● Upstream file: contracts/UniswapV2ERC20.sol

Functional changes:
● Some names were changed from UniswapV2 to 9Inch in the token name, symbol

and error messages.
● The safe-math library import path was changed.

contracts/swap/NineInchFactory.sol
● Upstream source: v2-core
● Upstream file: contracts/UniswapV2Factory.sol

Functional changes:
● Some names were changed from UniswapV2 to 9Inch in error messages, imports,

and types.

Page 5 of 23

https://github.com/Uniswap/v2-core.git
https://github.com/Uniswap/v2-periphery.git
https://github.com/Uniswap/solidity-lib.git
https://github.com/Uniswap/governance.git
https://github.com/pancakeswap/pancake-smart-contracts.git
https://bscscan.com/address/0xa5f8C5Dbd5F286960b9d90548680aE5ebFf07652#code
https://bscscan.com/address/0xa5f8C5Dbd5F286960b9d90548680aE5ebFf07652#code
https://bscscan.com/address/0x45c54210128a065de780c4b0df3d16664f7f859e#code
https://bscscan.com/address/0x45c54210128a065de780c4b0df3d16664f7f859e#code


9inch Audit
July 2023

● The INIT_CODE_PAIR_HASH constant was added, but it is not being used in any
solidity code in the project.

contracts/swap/NineInchPair.sol
● Upstream source: v2-core
● Upstream file: contracts/UniswapV2Pair.sol

Functional changes:
● Some import statements were changed, but we could not find any functional change

associated with it.
● Some names were changed from UniswapV2 to 9Inch in imports, types and error

messages.
● The _mintFee() and swap() functions were changed by changing some magic1

constants in the code.

contracts/swap/NineInchRouter.sol
● Upstream source: v2-periphery
● Upstream file: contracts/UniswapV2Router02.sol

Functional changes:
● Some import statements were changed, but we could not find any functional change

associated with it.
● Some names were changed from UniswapV2 to 9Inch in imports, types and error

messages.

contracts/tokens/NinceInch.sol
● Upstream source: governance
● Upstream file: contracts/Uni.sol

The file has too many changes, it has been analyzed as if it was written from scratch.

The NineInch contract provides an enhanced ERC20 token with voting delegation
capabilities, ensuring transparency and flexibility in voting mechanisms.

Uniswap-based Dependencies

contracts/swap/interfaces/INineInchCallee.sol
● Upstream source: v2-core
● Upstream file: contracts/interfaces/IUniswapV2Callee.sol

Functional changes:
● The interface name was changed to be part of the 9Inch project.

1 See https://en.wikipedia.org/wiki/Magic_number_(programming)

Page 6 of 23

https://en.wikipedia.org/wiki/Magic_number_(programming)


9inch Audit
July 2023

contracts/swap/interfaces/INineInchERC20.sol
● Upstream source: v2-core
● Upstream file: contracts/interfaces/IUniswapV2ERC20.sol

Functional changes:
● The interface name was changed to be part of the 9Inch project.

contracts/swap/interfaces/INineInchFactory.sol
● Upstream source: v2-core
● Upstream file: contracts/interfaces/IUniswapV2Factory.sol

Functional changes:
● The interface name was changed to be part of the 9Inch project.

contracts/swap/interfaces/INineInchPair.sol
● Upstream source: v2-core
● Upstream file: contracts/interfaces/IUniswapV2Pair.sol

Functional changes:
● The interface name was changed to be part of the 9Inch project.

contracts/swap/interfaces/INineInchRouter01.sol
● Upstream source: v2-periphery
● Upstream file: contracts/interfaces/IUniswapV2Router01.sol

Functional changes:
● The interface name was changed to be part of the 9Inch project.

contracts/swap/interfaces/INineInchRouter02.sol
● Upstream source: v2-periphery
● Upstream file: contracts/interfaces/IUniswapV2Router02.sol

Functional changes:
● The interface name was changed to be part of the 9Inch project.

contracts/swap/interfaces/IWETH.sol
● Upstream source: v2-periphery
● Upstream file: contracts/interfaces/IWETH.sol

This file has no functional changes.

contracts/libraries/SafeMath.sol
● Upstream source: masterchef

Page 7 of 23



9inch Audit
July 2023

● Upstream file: SafeMath.sol

Functional changes:
● Two functions, min() and sqrt() were added.
● The solidity pragma was changed from ^0.6.0 to >=0.4.0.

It must also be noted that this code is functionally a super set of the
contracts/libraries/SafeMath.sol file in the v2-periphery source. All the functions
defined there are implemented in this file, and the only functional changes in those
functions are different error messages.

contracts/libraries/Math.sol
● Upstream source: v2-core
● Upstream file: contracts/libraries/Math.sol

This file has no functional changes.

contracts/libraries/UQ112x112.sol
● Upstream source: v2-core
● Upstream file: contracts/libraries/UQ112x112.sol

This file has no functional changes.

contracts/libraries/NineInchLibrary.sol
● Upstream source: v2-periphery
● Upstream file: contracts/libraries/UniswapV2Library.sol

Functional changes:
● A magic constant was changed in the pairFor() function.
● The solidity pragma was changed from >=0.5.0 to 0.6.6.
● Some names were changed from UniswapV2 to 9Inch in imports, types and error

messages.

contracts/libraries/TransferHelper.sol
● Upstream source: solidity-lib
● Upstream file: contracts/libraries/TransferHelper.sol

Functional changes:
● The solidity pragma was changed from >=0.6.0 to >=0.6.6.
● Some error messages were changed.
● uint256 was changed to uint.

Page 8 of 23



9inch Audit
July 2023

PancakeSwap-Based Contracts

contracts/farm/MasterChefV2.sol
● Upstream source: masterchef
● Upstream file: MasterChefV2.sol

Functional changes:
● The solidity pragma was changed from 0.6.12 to >=0.6.12;
● The ReentrancyGuard contract was copied in the file, instead of importing it from

@openzeppelin/contracts/utils/ReentrancyGuard.sol.
● The cake contract was renamed as BBC. This implies changes in comments, type

names, field names, variable names and constant names.
● Removed legacy functionality associated with MasterchefV1.
● Added the transferOwnershipofBBC() function, only invocable by the owner of

the contract.

contracts/pool/TokenPool.sol
● Upstream source: cakepool
● Upstream file: CakePool.sol

The file has too many changes, it has been analyzed as if it was written from scratch.

TokenPool is a token pool management contract providing detailed control over
parameters, fee calculations, and user-based operations like deposits and withdrawals.

contracts/pool/TokenFlexiblePool.sol
● Upstream source: cakepool
● Upstream file: CakePool.sol

The file has too many changes, it has been analyzed as if it was written from scratch.

TokenFlexiblePool is a façade over another token pool, exposing a different API.
simplified version of the TokenPool contract, delivering essentially the same user
operations, without the granularity over parameters and a feature to boost withdrawal
amounts.

contracts/pool/SmartChefFactory.sol
● Upstream source: pancakeswap-contracts
● Upstream file:

projects/smartchef/v2/contracts/SmartChefInitializable.sol

Functional changes:
● The abicoder pragma was removed.
● Import paths were changed.

Page 9 of 23



9inch Audit
July 2023

● The "./interfaces/IPancakeProfile.sol" import was removed.
● Some variables were renamed, including changes to reflect that the token is named

BBC instead of CAKE.
● All constructor parameters were removed.
● Some error messages were changed.
● Pancake profile functionality was removed.

It must be noted that the projects/smartchef/v2/contracts/SmartChefFactory.sol
exists in the upstream source, but the contents of this file correspond to
projects/smartchef/v2/contracts/SmartChefInitializable.sol.

PancakeSwap-Based Dependencies

contracts/libraries/Address.sol
● Upstream source: cakepool
● Upstream file: Address.sol

Both the upstream file and the project file appear to be old and different versions of the
openzeppelin's address library. The only used function is functionCall(), invoked in the
contracts/tokens/SafeBEP20.sol file.

contracts/tokens/BEP20.sol
● Upstream source: pancakeswap-contracts
● Upstream file: projects/bsc-library/contracts/BEP20.sol

Functional changes:
● The mint() function has been declared virtual.
● Some import paths were changed.

contracts/tokens/SafeBEP20.sol
● Upstream source: pancakeswap-contracts
● Upstream file: projects/bsc-library/contracts/SafeBEP20.sol

Functional changes:
● Some import paths were changed.

contracts/tokens/interfaces/IBEP20.sol
● Upstream source: pancakeswap-contracts
● Upstream file: projects/bsc-library/contracts/SafeBEP20.sol

Functional changes:
● The mint() function was added.

Page 10 of 23



9inch Audit
July 2023

contracts/farm/interfaces/IMasterChefV2.sol
● Upstream source: cakepool
● Upstream file: IMasterChefV2.sol

Functional changes:
● The pendingCake() function was renamed as pendingBBC().
● The userInfo() function returns 3 uint256 values (it returns 2 uint256 values in

the upstream source).
● The BBC(), lpToken(), poolLength(), getBoostMultiplier() and

updateBoostMultiplier() functions were added.

No-Upstream Contracts

contracts/tokens/BBC.sol
ERC20 contract made with the BEP20 library, which is taken from the
pancakeswap-contracts upstream source.

No-Upstream Dependencies

contracts/pool/interfaces/ITokenPool.sol
This interface definition is imported in contracts/pool/TokenFlexiblePool.sol.

Methodology
CoinFabrik was provided with the source code and documentation about the upstream code
used. Six auditor-weeks were spend auditing the source code provided, which includes
understanding the context of use, analyzing the boundaries of the expected behavior of
each contract and function, understanding the implementation by the development team
(including dependencies beyond the scope to be audited) and identifying possible situations
in which the code allows the caller to reach a state that exposes some vulnerability.
Without being limited to them, the audit process included the following analyses.

● Arithmetic errors
● Outdated version of Solidity compiler
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling

Page 11 of 23



9inch Audit
July 2023

● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

It must be noted that on contracts where only small changes were made, we assumed that
the upstream contract is correct. See Contracts Origins.

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

CR-01 Infinite Vote Creation Critical Unresolved

CR-02 Price Decrease DOS Critical Unresolved

ME-01 Needs Rewrite Medium Unresolved

ME-02 Possible Reentrancy Attacks in
TokenFlexiblePool

Medium Unresolved

ME-03 Solidity Pragmas Medium Unresolved

ME-04 Possible Reentrancy Attacks in TokenPool Medium Unresolved

MI-01 No Zero Checks Minor Unresolved

MI-02 Excessive Allowance Minor Unresolved

MI-03 No Front-Running Protection Minor Unresolved

MI-04 Fee-Avoidance Minor Unresolved

Page 12 of 23



9inch Audit
July 2023

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues

CR-01 Infinite Vote Creation
Location:

● contracts/tokens/NineInch.sol

Votes, as obtained by the NineInch.getCurrentVotes() function, can be grown infinitely.
Any token holder can obtain an unbounded number of votes.

Page 13 of 23



9inch Audit
July 2023

Hereunder is a proof of concept showing the issue:
it("Create votes cycling tokens (Σvotes > Σtokens)", async function () {

await nineInch

.connect(owner)

.mint(addr0.address, ethers.utils.parseEther("100"));

await nineInch.connect(addr0).delegate(addr3.address);

await nineInch

.connect(addr0)

.transfer(addr1.address, ethers.utils.parseEther("100"));

await nineInch.connect(addr1).delegate(addr2.address);

await nineInch

.connect(addr1)

.transfer(addr0.address, ethers.utils.parseEther("100"));

sumOfDelegatedVotes = (await nineInch.getCurrentVotes(addr0.address))

.add(await nineInch.getCurrentVotes(addr1.address))

.add(await nineInch.getCurrentVotes(addr2.address))

.add(await nineInch.getCurrentVotes(addr3.address));

expect(sumOfDelegatedVotes).to.be.above(

await nineInch.balanceOf(addr0.address)

);

});

Please note that this bug is not present in the upstream code.

It must also be noted that, while not strictly this issue, it is also a problem that burning
some tokens does not destroy the votes associated with them.

Recommendation
Either remove the functionality to delegate votes altogether or make sure that for each
delegation the total number of votes stays the same, and that total number of votes are
only increased when minting, the total number of votes stays the same on transfers and
that the total number of votes decreases when burning. Also a mechanism to undo a
delegation could be a good addition.

Status
Unresolved.

CR-02 Price Decrease DOS
Location:

● contracts/pool/TokenFlexiblePool.sol: 118-119,202-203

Page 14 of 23



9inch Audit
July 2023

When doing a deposit or a withdrawal in the TokenFlexiblePool contract, if the share
price decreases since the last user action, the operation will revert with an underflow error.
The decrease can happen if isPureBBCPool() is true. The code is repeated in both
operations:

uint256 totalAmount = (user.shares * balanceOf()) / totalShares;

uint256 earnAmount = totalAmount - user.bbcAtLastUserAction;

The underflow is triggered as totalAmount will be less than user.bbcAtLastUserAction.
This, in turn, impedes the user from either depositing or withdrawing until the price reaches
the original level again.

Recommendation
This issue should be fixed by a redesign of the TokenFlexiblePool contract. Designing
this new logic is out of the scope of this report because it probably requires making
functional decisions. However, when completed, it should take into account the following
recommendation.

TokenFlexiblePool contract’s behavior is very different when isPureBBCPool() is true.
Therefore, this contract should be split into two contracts, maybe using an abstract and
common base contract. When writing the new contract for the case where
isPureBBCPool() == true, the logic should handle eventual price decreases (which is not
needed when isPureBBCPool() == false). This new logic might imply not paying
performance fees until the funds are withdrawn.

Status
Unresolved.

Medium Severity Issues

ME-01 Needs Rewrite
Copying and pasting old code from the internet is not a good security practice nor a good
software engineering practice. Even more so when the code is altered extensively
afterwards. Most of the code analyzed in this audit suffers from this. This is compounded
by:

1. A part of the copied code should not be used, as explained in its documentation. See
projects/bsc-library/README.md in the pancakeswap-contracts upstream
source.

2. Some solidity pragmas were changed. There are several incompatible changes in
solidity version changes.

3. Some dependencies were shared between the different upstream sources, but
different versions were used in the upstream code. The development team in some

Page 15 of 23



9inch Audit
July 2023

instances just kept one and used it for all the code. There is no warranty that this
approach will work properly.

4. The version control (git) has not been used properly. Looking at the history of the
development it is not possible to see the original code used and the changes
applied.

5. The new code suffers from serious design problems. For example the TokenPool
and TokenFlexiblePool contracts do not follow the single responsibility principle .2

This can be seen at least 20 times where the isPureBBCPool() function, which by
the way is copy pasted in the two contracts, is invoked to choose different logic
paths.

6. There is commented code in the audited code. For example, we found commented
code at contracts/pool/TokenFlexiblePool.sol:151,221,
contracts/tokens/BBC.sol:9,25, contracts/tokens/NineInch.sol:35 and
contracts/farm/MasterChefV2.sol:223-228,683-687. This list is not intended
to be exhaustive.

7. There are functions only intended for development purposes in the audited code. For
example, the MasterChefV2.transferOwnershipOfBBC() function is present in the
code but documented to be only for development in the Audit Full Report.pdf

file. The code shall include just the logic needed for the production environment.

It also must be noted that the GPLv3 license for Uniswap is being broken by relicensing the
code as MIT.

Please note that CR-01 Infinite Vote Creation and CR-02 Price Decrease DOS issues can be
attributed to this issue as the root cause, but fixing them is not enough to solve the
underlying software development problem noted here.

Recommendation
A full rewrite from scratch, properly following standard software engineering practices, is
required. Good software engineering practices include test-first development, using
libraries instead of copy and pasting code, proper use of a version control system and
following the DRY and YAGNI principles. Given that the code needs to be rewritten, we
recommend simplifying it. Doing a code collage naturally increases the attack surface of the
system. When this rewrite is made, use a single and up to date solidity version and pin it in
the source code.

Status
Unresolved.

ME-02 Possible Reentrancy Attacks in TokenFlexiblePool

Location:

2 https://en.wikipedia.org/wiki/Single-responsibility_principle

Page 16 of 23

https://en.wikipedia.org/wiki/Single-responsibility_principle


9inch Audit
July 2023

● contracts/pool/TokenFlexiblePool.sol

If the bbcPool, token or bbc contracts are forced to make a call to an attacker contract
while in the activation of the deposit(), withdraw() or claim() functions in the
TokenFlexiblePool contract, or the treasury account is compromised, then a reentrancy
attack can be made, potentially losing funds.

Recommendation
The deposit(), withdraw() and claim() functions in the TokenFlexiblePool contract
need to either be marked as nonReentrant or written following the
checks-effects-interaction pattern. Another option is to provide a mathematical proof that
this attack is not possible.

Status
Unresolved.

ME-03 Solidity Pragmas
Several solidity pragmas are used in the audited code. Such as:

1. pragma solidity >=0.6.6; (in contracts/libraries/Address.sol:3)
2. pragma solidity 0.6.6; (in contracts/libraries/NineInchLibrary.sol:2)
3. pragma solidity >=0.4.0; (in contracts/libraries/SafeMath.sol:3)
4. pragma solidity ^0.8.0; (in contracts/pool/SmartChefFactory.sol:2)
5. pragma solidity =0.5.16; (in contracts/swap/NineInchFactory.sol:2)
6. pragma solidity >=0.6.2; (in

contracts/swap/interfaces/INineInchRouter02.sol:2)
7. pragma solidity >=0.5.0; (in contracts/swap/interfaces/IWETH.sol:2)

Using any of those solidity pragmas is not recommended. Using old solidity versions may
lead to bugs, including security ones. Mixing different solidity versions in the same project
may lead to bugs, including security ones. Not pinning the solidity version to a single
version may lead to bugs, including security ones.

Recommendation
Choose a single solidity version for the project. Pin the solidity version in the code (no > or ~
in the solidity pragma). Rewrite the code to use the features in the solidity version and do
all the changes required to avoid incompatibilities between solidity versions.

Status
Unresolved.

ME-04 Possible Reentrancy Attacks in TokenPool

Location:
● contracts/pool/TokenPool.sol

Page 17 of 23



9inch Audit
July 2023

If the masterchefV2, token or bbc contracts are forced to make a call to an attacker
contract while in the activation of the deposit(), withdraw(), withdrawByAmount(),
unlock() or claim() functions in the TokenPool contract then a reentrancy attack can be
made, potentially losing funds.

Recommendation
The deposit(), withdraw(), withdrawByAmount(), unlock() and claim() functions in
the TokenPool contract need to either be marked as nonReentrant or written following the
checks-effects-interaction pattern. Another option is to provide a mathematical proof that
this attack is not possible.

Status
Unresolved.

Minor Severity Issues

MI-01 No Zero Checks
Location:

● contracts/swap/NineInchRouter.sol: 23-26

● contracts/pool/TokenFlexiblePool.sol: 68-81

● contracts/pool/TokenPool.sol: 107-122,129-138

● contracts/farm/MasterChefV2.sol: 201-204

● contracts/swap/NineInchFactory.sol: 25,27,58-61,63-66

● contracts/swap/NineInchPair.sol: 88-92,

It is a standard best practice to check that all the addresses passed to constructors or
functions are not zero. This practice was not implemented in lots of places in the code.

Recommendation
Check that all the passed addresses are non-zero via require statements.

Status
Unresolved.

MI-02 Excessive Allowance
Location:

● contracts/pool/TokenFlexiblePool.sol:80

In the TokenFlexiblePool constructor, the bbcPool is given the ability to withdraw infinite
tokens. This is a bad security practice, as it may potentially allow an attacker to take control
of all the tokens in the contract.

Page 18 of 23



9inch Audit
July 2023

Recommendation
Use the token.safeIncreaseAllowance() function to award the bbcPool contract the
required allowance only when needed, passing the actual amount to be withdrawn.

Status
Unresolved.

MI-03 No Front-Running Protection
Location:

● contracts/pool/TokenFlexiblePool.sol

● contracts/pool/TokenPool.sol

An EOA interacting with the TokenPool or TokenFlexiblePool contracts may lose an
unbounded amount when doing deposit or withdrawal operations. This lack of protection
may be used in a front-running attack.

Recommendation
For each withdrawal or deposit operation add an additional parameter that bounds the
amount of shares or tokens (depending on the function) involved to limit the loss that can
occur due to price fluctuations.

Just as an example, the TokenPool.withdraw() function signature can be changed to
function withdraw(uint256 _shares, uint256 _minAmount) where _minAmount is the
minimum amount to be withdrawn.

Another way to solve this problem is adding new functions to specify those limits
(minimum or maximum depending on the case). This approach could be preferable if there
is a need of preserving the current API.

Status
Unresolved.

MI-04 Fee-Avoidance
Location:

● contracts/pool/TokenPool.sol:

218-220,467-469,509-511,758-760,824-826

If the performance fee or the withdrawal fee for contracts is lower than the corresponding
EOA fee, an attacker may pay less fees by using the TokenPool contract via an intermediate
contract.

Page 19 of 23



9inch Audit
July 2023

Recommendation
Either make sure that the EOA fees are lower than the contract fees or remove the fee
distinction between EOAs and contracts altogether.

Status
Unresolved.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization

BBC
The owner of the BBC contract can mint tokens at any time.

TokenPool
The owner of the TokenPool contract can set the treasury address, where all the fees are
sent. They can also set the contract's admin and the contract's operator.

The admin of the TokenPool contract can set lots of configuration parameters that dictates
fees and other settings, withdraw ERC20 tokens sent to the contract, and pause or restart
the contract.

The operator of the TokenPool contract can unlock funds for any user.

TokenFlexiblePool
The owner of the TokenFlexiblePool contract can set the treasury address, where all the
fees are sent. They can also set the contract's admin.

The admin of the TokenFlexiblePool contract can set lots of configuration parameters
that dictates fees and other settings, withdraw ERC20 tokens sent to the contract and
pause or restart the contract.

Upgrades
None of the audited contracts has code-upgrade previsions.

Page 20 of 23



9inch Audit
July 2023

Privileged Roles
These are the privileged roles that we identified on each of the audited contracts.

BBC

Owner
The owner of this contract can:

● mint tokens for itself or others via the mint() and mintFor() functions.
● transfer BBC tokens awarded to the contract itself via the

transferOwnershipOfBBC() function.
● renounce its ownership, via the renounceOwnership() function. If this happens, no

more tokens can be minted.
● set a new owner via the transferOwnership() function.

By default, the owner of this contract is the deployer of the contract.

TokenFlexiblePool

Owner
The owner of this contract can:

● set the contract admin via the setAdmin() function.
● set the contract treasury via the setTreasury() function.
● renounce its ownership, via the renounceOwnership() function.
● set a new owner via the transferOwnership() function.

By default, the owner of this contract is the deployer of the contract.

Admin
The admin of this contract can:

● set the performance fee via the setPerformanceFee() function.
● set the withdrawal fee via the setWithdrawFee() function.
● set the withdrawal fee period via the setWithdrawFeePeriod() function.
● set the withdrawal amount booster via the setWithdrawAmountBooster() function.
● withdraw all the bbcPool funds via the emergencyWithdraw() function. After this

function is called no more deposits are accepted and the funds to withdraw are
awarded to this contract.

● withdraw any token but the staking token sent to the contract via the3

inCaseTokensGetStuck() function.
● pause and restart the contract via the pause() and unpause() functions.

3 token in the source code.

Page 21 of 23



9inch Audit
July 2023

The initial admin is passed to the contract via the contract constructor in the _admin
parameter and can be changed by the contract's owner.

TokenPool

Owner
The owner of this contract can:

● init the contract via the init() function
● do an emergency withdrawal in the masterchefV2 contract via the close()

function.
● set the contract admin via the setAdmin() function.
● set the contract treasury via the setTreasury() function.
● set the contract operator via the setOperator() function.
● renounce its ownership, via the renounceOwnership() function.
● set a new owner via the transferOwnership() function.

By default, the owner of this contract is the deployer of the contract.

Admin
The admin of this contract can:

● exclude or reinclude an address from charging performance fees via the
setFreePerformanceFeeUser() function. Performance fees are charged to an
address by default.

● exclude or reinclude an address from charging overdue fees via the
setOverdueFeeUser() function. Overdue fees are charged to an address by
default.

● exclude or reinclude an address from charging withdrawal fees via the
setWithdrawFeeUser() function. Withdraw fees are charged to an address by
default.

● set the performance fee for EOAs via the setPerformanceFee() function.
● set the performance fee for contracts via the setPerformanceFeeContract()

function.
● set the withdrawal fee for EOAs via the setWithdrawFee() function.
● set the withdrawal fee for contracts via the setWithdrawFeeContract() function.
● set the withdrawal fee period via the setWithdrawFeePeriod() function.
● set the overdue fee via the setOverdueFee() function.
● set the max-lock duration via the setMaxLockDuration() function.
● set the duration factor via the setDurationFactor() function.
● set the duration factor when overdue via the setDurationFactorOverdue()

function.
● set the duration of the unlock-free period via the setUnlockFreeDuration()

function.
● set the boost weight via the setBoostWeight() function.

Page 22 of 23



9inch Audit
July 2023

● withdraw any ERC-20 non-deposit tokens awarded to this contract via the
inCaseTokensGetStuck() function.

● pause and restart the contract via the pause() and unpause() functions.

The initial admin is passed to the contract via the contract constructor in the _admin
parameter and can be changed by the contract's owner.

Operator
The operator of this contract can unlock funds for any user via the unlock() function.

The initial operator is passed to the contract via the contract constructor in the _operator
parameter and can be changed by the contract's owner.

Changelog
● 2023-07-14 – Initial report based on commit

12bfd42b293417dd32eae6f0d3e1ee93d6125c55.
● 2023-07-19 – Clarify issues CR-02, ME-01 and MI-03.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the 9Inch project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 23 of 23


