
Zest Protocol Audit
Borrow

January 2024

By CoinFabrik

v202311



Zest Protocol Audit
January 2024

Executive Summary 3
Scope 3
Methodology 4
Findings 4

Severity Classification 5
Issues Status 5
Critical Severity Issues 6
High Severity Issues 6

HI-01 No Maximum Value for Fees 6
Medium Severity Issues 6

ME-01 Disabled Collateral Cannot be Liquidated 6
ME-02 Authentication via tx-sender 7

Minor Severity Issues 8
MI-01 Panicking on Possible Error 8
MI-02 As Contract Call to Unverified Principal 8

Enhancements 9
EN-01 Remove Dead Code 9
EN-02 Place Definitions before Usage 10
EN-03 Resolve TODO Comments 10

Other Considerations 10
Centralization 10
Upgrades 11

Changelog 11

Page 2 of 11



Zest Protocol Audit
January 2024

Executive Summary
CoinFabrik was asked to audit the contracts for the Zest Protocol project.

During this audit we found two high issues, one medium issue and two minor issues. Also,
several enhancements were proposed.

Three issues were resolved and two issues were mitigated. All the enhancements were
implemented.

Scope
The audited files are from the git repository located at
https://github.com/Zest-Protocol/zest-contracts/. The audit is based on the commit
dae42d8d6aa4710cab95bd44717a9dda40f2bd2e. Fixes were checked on commit
8a206a8568acc5092e1a074e118fc4a8e9bbde4e.

The scope for this audit includes and is limited to the following files:

● onchain/contracts/borrow/math/math.clar: Math utility contract.
● onchain/contracts/borrow/pool/fees-calculator.clar: Calculates origination

fee.
● onchain/contracts/borrow/pool/oracle.clar: Price oracle.
● onchain/contracts/borrow/pool/pool-borrow.clar: Interface for the system.
● onchain/contracts/borrow/pool/liquidation-manager.clar: Contract for

liquidation functions.
● onchain/contracts/borrow/vaults/pool-0-reserve.clar: Main contract for

managing pool state.
● onchain/contracts/borrow/vaults/pool-reserve-data.clar: Stores pool

parameters.
● onchain/contracts/borrow/token/zToken.clar: Derivative from lended token.
● onchain/contracts/borrow/traits/flash-loan-trait.clar: Trait for flash loan

executer.
● onchain/contracts/borrow/traits/a-token-trait.clar: Trait for token

derivative.
● onchain/contracts/borrow/traits/oracle-trait.clar: Trait for oracle

contract.

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Page 3 of 11

https://github.com/Zest-Protocol/zest-contracts/


Zest Protocol Audit
January 2024

Methodology
CoinFabrik was provided with the source code. Our auditors spent three weeks auditing the
source code provided, which includes understanding the context of use, analyzing the
boundaries of the expected behavior of each contract and function, understanding the
implementation by the development team (including dependencies beyond the scope to be
audited) and identifying possible situations in which the code allows the caller to reach a
state that exposes some vulnerability. Without being limited to them, the audit process
included the following analyses.

● Arithmetic errors
● Race conditions
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

After delivering a report with our findings, the development team had the opportunity to
comment on every finding and fix the issues they considered convenient. Once fixed and/or
commented, our team ran a second review process to verify that the changes to the code
effectively solve the issues found and do not unintentionally add new ones. This report
includes the final status after the second review.

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

HI-01 No Maximum Value for Fees High Resolved

ME-01 Disabled Collateral Cannot be Liquidated Medium Mitigated

Page 4 of 11



Zest Protocol Audit
January 2024

ID Title Severity Status

ME-02 Authentication via tx-sender Medium Mitigated

MI-01 Panicking on Possible Error Minor Resolved

MI-02 As Contract Call to Unverified Principal Minor Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

Page 5 of 11



Zest Protocol Audit
January 2024

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues
No issues found.

High Severity Issues

HI-01 No Maximum Value for Fees
Location:

● onchain/contracts/borrow/vaults/pool-reserve-data.clar: 81

The origination fee can be set by any of the approved contracts from the system. This fee
can be set calling set-user-reserve-date() with a new value. However, there is no
maximum value for this fee. This can lead to an owner front-running users and raising the
fees before they interact with the system. Also, borrowers might find a higher fee when
repaying the loan, which could represent any value, even one higher than the borrowed
amount.

Recommendation

Define a maximum value for the origination fee and enforce it.

Status
Resolved. The development team informed us that there is a global configurator and users
will be warned of any changes to fees before they are executed so that front-running is not
an issue for them before there is a confirmation of changes in the fees. Also, users will be
able to set the maximum accepted fee on the website and it will be enforced by
post-conditions.

Medium Severity Issues

ME-01 Disabled Collateral Cannot be Liquidated
Location:

● onchain/contracts/borrow/pool/liquidation-manager.clar

● onchain/contracts/borrow/pool/pool-borrow.clar

The liquidation-call() function can be called by any user in order to liquidate an
undercollateralized position. However, this function reverts when the asset as collateral,
either by the user or by the reserve.

Page 6 of 11



Zest Protocol Audit
January 2024

For the user case, this does not represent an issue since the user cannot disable it while
there is a position with that asset as collateral. While for the reserve, the asset can be
disabled without any verification, but only the configurator role can do it through the
set-reserve() function (located in pool-borrow:432).

Therefore, the configurator can disable an asset and get the system into an unsustainable
economic state. In specific market conditions, this can lead to the protocol being unable to
return the underlying asset to the suppliers.

Recommendation
The set-reserve() function should revert if the asset is in use. Otherwise, the decision of
disabling an asset for a long period should be thoroughly investigated beforehand.

Status
Mitigated. Now a frozen state was added which is meant to be used only for emergencies.
This status is set by the configurator. The issue persists, but only for assets in this status.

ME-02 Authentication via tx-sender
Location:

● onchain/contracts/borrow/vaults/pool-0-reserve.clar

● onchain/contracts/borrow/token/zToken.clar

The system utilizes tx-sender for its authentication processes. This method, while
functional, presents latent vulnerabilities, particularly exposing actors within the system to
threats known as phishing .1

Actors could inadvertently activate a malicious contract. Once activated, the deceptive
contract can access and initiate certain functions, presenting actions as if they were done by
the original actor. This impersonation potential poses risks, depending on the specific
function being accessed.

This issue has a larger impact when involving owner or configurator authentication because
those users define system parameters and those calls are not protected by post-conditions
as in asset transfers.

Recommendation
It is advisable to switch from using tx-sender to contract-caller for a more reliable and
secure authentication method. It must be noted that when tx-sender is used as part of an
as-contract invocation it does not lead to this issue, as it evaluates to the contract's
principal.

Introducing a whitelist for trusted callers can add an extra layer of security, particularly if
the system needs to interact with specific intermediary contracts. These intermediate

1 https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/

Page 7 of 11

https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/


Zest Protocol Audit
January 2024

contracts should properly check their contract-caller and/or pass it to the contract
where the check needs to be made.

Status
Mitigated. The development team decided authentication via tx-sender must remain for
minting, burning and transferring of assets to remain compatible with other assets in the
Stacks ecosystem. Also, this risk would be properly documented for keeping users
informed.

Minor Severity Issues

MI-01 Panicking on Possible Error
Location:

● onchain/contracts/borrow/vaults/pool-0-reserve.clar: 225, 233, 238,

384, 1452

Using unwrap-panic results in the transaction being finished because of a runtime error
when the provided value is an error or a none. The runtime error does not allow the caller
to handle that error and act in response. Also, this kind of error does not provide any
information about the reason for the reverted transaction to the user.

While that form is a convenient method to unwrap values, it should not be used unless it is
impossible to trigger the panic.

Recommendation
Replace unwrap-panic for unwrap! or try! when there is a flow which might trigger an
error or none value.

Status
Resolved. Fixed according to the recommendation.

MI-02 As Contract Call to Unverified Principal
Location:

● onchain/contracts/borrow/vaults/pool-0-reserve.clar: 1074

Enclosing a contract call in an as-contract expression makes this internal call to be made
on behalf of the caller contract (here pool-0-reserve). The tx-sender value is changed to
this caller contract.

In a predefined set of scenarios, where the callees are limited to a whitelist, this does not
involve an issue. However, here the principal (asset) is not verified. Then, any of the roles
who can call this function (liquidators and lending pools, either as direct callers or as

Page 8 of 11



Zest Protocol Audit
January 2024

tx-sender) can use a malicious contract instead of an actual asset and use
pool-0-reserve authorization for modifying protocol state in unexpected terms.

Currently, this issue is minor because the pool-0-reserve contract only has authorization
for functions which authenticate through contract-caller. Then, no malicious contract
will work. However, this should be considered for newer contracts, which might be
vulnerable to this issue.

Recommendation
Validate the actual parameter against a whitelist.

Status
Resolved. Function removed.

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Remove Dead Code Implemented

EN-02 Place Definitions before Usage Implemented

EN-03 Resolve TODO Comments Implemented

EN-01 Remove Dead Code
Location:

● onchain/contracts/borrow/pool/pool-borrow.clar: 12, 81, 111

● onchain/contracts/borrow/vaults/pool-0-reserve.clar: 19, 349, 1589,

1612, 1635

● onchain/contracts/borrow/pool/fees-calculator.clar: 5, 9, 17, 21

(user parameter)

● onchain/contracts/borrow/math/math.clar: 34, 40

The listed code lines have functions, parameters, values or commented code which are not
used. This reduces code readability.

Page 9 of 11



Zest Protocol Audit
January 2024

Status
Implemented.

EN-02 Place Definitions before Usage
Location:

● onchain/contracts/borrow/pool/liquidation-manager.clar

● onchain/contracts/borrow/token/zToken.clar

● onchain/contracts/borrow/vaults/pool-0-reserve.clar

● onchain/contracts/borrow/vaults/pool-reserve-data.clar

● onchain/contracts/borrow/math/math.clar

Listed files contain definitions, mostly error definitions, which are placed at the bottom of
the file, after their usage instances. It is preferable to define them before for better
readability.

Status
Implemented.

EN-03 Resolve TODO Comments
Location:

● onchain/contracts/borrow/token/zToken.clar

In the listed files, there are comments with TODOs which should be either done or
removed.

Status
Implemented.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization
There are two important roles which are the contract owner and the configurator. Those
two can set different system parameters which alter the functionality of the application.

Page 10 of 11



Zest Protocol Audit
January 2024

Upgrades
Contracts are tightly coupled. There is no mechanism for upgrading them, with the
exception of the treasury and the reserve vaults.

Changelog
● 2024-02-01 – Initial report based on commit

dae42d8d6aa4710cab95bd44717a9dda40f2bd2e.
● 2024-02-15 – Fixes checked on commit

8a206a8568acc5092e1a074e118fc4a8e9bbde4e.
● 2024-02-19 – ME-02 severity modified and status updated based on feedback from

the development team.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Zest Protocol project since CoinFabrik has not reviewed its
platform. Moreover, it does not provide a smart contract code faultlessness
guarantee.

Page 11 of 11


