
Velar Audit
February 2024

By CoinFabrik

v202311



Velar Audit
January 2024

Executive Summary 3
Scope 3

First Iteration 3
Second Iteration 3

Methodology 5
Findings 5

Severity Classification 6
Issues Status 6
Critical Severity Issues 7
High Severity Issues 7

HI-01 Authentication via tx-sender 7
Medium Severity Issues 8

ME-01 Block Time Assumption Broken on Nakamoto Release 8
Minor Severity Issues 8

MI-01 Convoluted Fees 8
MI-02 check-fee Rounding Errors 9
MI-03 Panicking on Possible Error 9

Enhancements 10
EN-01 Proper Project 10
EN-02 Commented Code 10
EN-03 Unused Data in Blockchain 11

Other Considerations 11
Centralization 11
Privileged Roles 11

contracts/univ2-core.clar 12
contracts/univ2-fee-to.clar 12
contracts/wstx-xusd.clar 12

Changelog 13

Page 2 of 13



Velar Audit
January 2024

Executive Summary
CoinFabrik was asked to audit the contracts for the Velar project.

During this audit we found one high issue, one medium issue and several minor issues.
Also, several enhancements were proposed.

One minor issue was resolved, one high issue was partially resolved and the other issues
were acknowledged. Two enhancements were implemented.

Scope
The audited files are from two different git repositories, which correspond to the same code
but in different iterations.

The dependencies are assumed to work according to their documentation. Also, no tests
were reviewed for this audit.

First Iteration
Repository: https://github.com/Velar-co/mainnet .

Commit: 20708903c01bff64b1b4c23920bfd1b79a72d876.

The scope for this iteration includes and is limited to the following files:

● contracts/ft-plus-trait.clar: SIP-10 trait with mint and burn functions.
● contracts/univ2-core.clar: UniswapV2-like core and factory contract.
● contracts/univ2-fee-to-trait.clar: Trait with the send-revenue function.
● contracts/univ2-fee-to.clar: Funds-accumulation contract.
● contracts/univ2-library.clar: Utility functions to calculate swap amounts.
● contracts/univ2-router.clar: UniswapV2-like router.
● contracts/wstx-xusd.clar: SIP010 token named wstx-xusd, with mint and burn.
● contracts/wstx.clar: SIP010 interface for STX.

It must be noted that the contracts/wstx-xbtc.clar file, present in the audited version
but not referenced in the Clarinet.toml file, was not included in this audit.

Second Iteration
Repository: https://github.com/Velar-co/velar-1.0 .

Commit: be59a79375bd8fa4aeccf498d223005ccda6c89d.

Page 3 of 13

https://github.com/Velar-co/mainnet
https://github.com/Velar-co/velar-1.0


Velar Audit
January 2024

The scope for this iteration includes and is limited to the following files:

● staking-core/staking-core.clar: Contract for stacking and unstacking Velar.
● staking-periphery/staking-distributor.clar: Contract for distributing Velar

staking rewards.
● farming/farming-send.clar: Contract for tokens transferring and notifying the

receiver.
● farming/farming-receive-trait.clar: Trait for contracts which are notified on

token transfer.
● farming/farming-wstx-velar-core.clar: Contract for stacking and unstacking

wSTX-Velar LP token.
● farming/farming-wstx-velar-distributor.clar: Contract for distributing

wSTX-Velar farming rewards.
● univ2-lptokens/template.clar: Template for LP token.
● univ2-lptokens/wstx-sbtc.clar: wSTX-sBTC LP token.
● univ2-lptokens/wstx-velar.clar: wSTX-Velar LP token.
● univ2-lptokens/wstx-xbtc.clar: wSTX-xBTC LP token.
● tokens/neebs.clar: Neebs token.
● tokens/velar.clar: Velar token.
● util/util-multisend.clar: Utility for transferring to many recipients at once.

And this is a map from first iteration scope to second iteration scope, where contracts were
renamed or relocated:

● contracts/ft-plus-trait.clar ->
contracts/univ2-core/ft-plus-trait.clar

● contracts/univ2-core.clar -> contracts/univ2-core/univ2-core.clar

● contracts/univ2-fee-to-trait.clar ->
contracts/univ2-core/univ2-share-fee-to-trait.clar

● contracts/univ2-fee-to.clar ->
contracts/univ2-core/univ2-share-fee-to.clar

● contracts/univ2-library.clar ->
contracts/univ2-periphery/univ2-library.clar

● contracts/univ2-router.clar ->
contracts/univ2-periphery/univ2-router.clar

● contracts/wstx-xusd.clar -> contracts/univ2-lptokens/wstx-xusd.clar

● contracts/wstx.clar -> contracts/tokens/wstx.clar

Page 4 of 13



Velar Audit
January 2024

Methodology
CoinFabrik was provided with the source code. Our auditors spent one week auditing the
source code provided, which includes understanding the context of use, analyzing the
boundaries of the expected behavior of each contract and function, understanding the
implementation by the development team (including dependencies beyond the scope to be
audited) and identifying possible situations in which the code allows the caller to reach a
state that exposes some vulnerability. Without being limited to them, the audit process
included the following analyses.

● Arithmetic errors
● Race conditions
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

HI-01 Authentication via tx-sender High Partially resolved

ME-01 Block Time Assumption Broken on
Nakamoto Release

Medium Acknowledged

MI-01 Convoluted Fees Minor Acknowledged

MI-02 check-fee Rounding Errors Minor Resolved

Page 5 of 13



Velar Audit
January 2024

ID Title Severity Status

MI-03 Panicking on Possible Error Minor Acknowledged

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Page 6 of 13



Velar Audit
January 2024

Critical Severity Issues
No issues found.

High Severity Issues

HI-01 Authentication via tx-sender
Location:

● contracts/univ2-core.clar: 32,41,265,283,358,425,566

● contracts/univ2-fee-to.clar: 18,27

● contracts/wstx-xusd.clar: 18,46

● tokens/neebs.clar: 15, 29

● tokens/velar.clar: 15, 29

● contracts/staking-periphery/staking-distributor.clar: 17

● contracts/farming/farming-wstx-velar-distributor.clar: 22

The system utilizes tx-sender for its authentication processes. This method, while
functional, presents latent vulnerabilities, particularly exposing actors within the system to
threats known as phishing .1

Actors could inadvertently activate a malicious contract. Once activated, the deceptive
contract can access and initiate certain functions, presenting actions as if they were done by
the original actor. This impersonation potential poses risks, depending on the specific
function being accessed.

In particular, all the actions made by all the roles described for all the contracts in the
Privileged Roles can be a target for a phishing attack.

Recommendation
It is advisable to switch from using tx-sender to contract-caller for a more reliable and
secure authentication method. It must be noted that when tx-sender is used as part of an
as-contract invocation it does not lead to this issue, as it evaluates to the contract's
principal. Introducing a white list for trusted callers can add an extra layer of security,
particularly if the system needs to interact with specific intermediary contracts. These
intermediate contracts should properly check their contract-caller and/or pass it to the
contract where the check needs to be made.

Status
Partially resolved. Contract-caller implemented only in the following lines:

● contracts/univ2-core.clar: 32

1 https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/

Page 7 of 13

https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/


Velar Audit
January 2024

For the rest of the instances, the development team decided to keep tx-sender for
compatibility with existing tokens. In that case, the issue is mitigated by proper use of
post-conditions.

Medium Severity Issues

ME-01 Block Time Assumption Broken on Nakamoto Release
Location:

● contracts/farming/farming-wstx-velar-core.clar: 19

● contracts/staking-core/staking-core.clar: 19

Farming and stacking core contracts assume block time for the calculation of epoch lengths.
However, this assumption is expected to be modified in the next Stacks upgrade (Nakamoto
Release), which will reduce block time.

Recommendation
Instead of relying on Stacks block time, rely on Bitcoin block time which is not expected to
change. For this, replace block-height instances for burn-block-height.

Status
Acknowledged. The development team decided to keep this assumption.

Minor Severity Issues

MI-01 Convoluted Fees
Location:

● contracts/univ2-core.clar:528-548

The calculation of the fees for swapping in contracts/univ2-core.clar is non-intuitive

1. The swap fee is really the amount that is not fees.
2. The protocol fee is calculated against the fee total, and not the total value.
3. The share fee is calculated against the protocol fee, and not the total value nor the

fee amount.

This convoluted way to calculate fees may cause misunderstanding in the users on how the
fees are charged.

It must also be noted that the fees are calculated in the calc-swap function. This name is
also misleading, as it implies that the obtained token amount is calculated instead.

Page 8 of 13



Velar Audit
January 2024

Recommendation
Calculate all the fees directly based on the in amount. Choose proper names to describe
fees.

Status
Acknowledged. The development team decided to keep the current fee system.

MI-02 check-fee Rounding Errors
Location:

● contracts/univ2-core.clar: 122-129

In the check-fee function of the contracts/univ2-core.clar contract, if the
denominator of the either fee or guard does not divide 1000000, there may be rounding
errors leading to accepting a slightly bigger fee than guard.

Recommendation
Choose a single denominator for all the fees. Compare only the fee numerators.

Status
Resolved. Fixed according to the recommendation.

MI-03 Panicking on Possible Error
Location:

● contracts/staking-periphery/staking-distributor.clar: 161, 226

● contracts/farming/farming-wstx-velar-distributor.clar: 125, 154

Using unwrap-panic results in the transaction being finished because of a runtime error
when the provided value is an error or a none. The runtime error does not allow the caller
to handle that error and act in response. Also, this kind of error does not provide any
information about the reason for the reverted transaction to the user.

While that form is a convenient method to unwrap values, it should not be used unless it is
impossible to trigger the panic.

Recommendation
Replace unwrap-panic for unwrap! when there is a flow which might trigger an error or
none value.

Status
Acknowledged. The development team decided not to change the error handling.

Page 9 of 13



Velar Audit
January 2024

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Proper Project Implemented

EN-02 Commented Code Implemented

EN-03 Unused Data in Blockchain Not implemented

EN-01 Proper Project
The provided source code does not pass the clarinet check command. When ran in the
command line it fails:

$ clarinet check

error: unable to read file /audits/Velar-co-mainnet/settings/Devnet.toml

Os { code: 2, kind: NotFound, message: "No such file or directory" }

Also no tests for the clarinet test command were provided

Recommendation
Provide a proper project to assess and test the contracts.

Status
Implemented.

EN-02 Commented Code
Location:

● contracts/univ2-library.clar: 90-133

Recommendation
Remove the commented code.

Status
Implemented.

Page 10 of 13



Velar Audit
January 2024

EN-03 Unused Data in Blockchain
Location:

● contracts/univ2-core.clar: 70-79

The symbol, block-height and burn-block-height fields in the pool map of the
contracts/univ2-core.clar contract are not needed for the contract functionality.

Recommendation
Remove the unneeded data to save on transaction fees and simplify the code.

Status
Not implemented.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization
The owner of the contracts/univ2-core.clar contract can set the fees and the where
the fees go to.

The owner of the contracts/univ2-fee-to.clar contract can withdraw funds from the
contract.

The owner of the contracts/wstx-xusd.clar contract can mint and burn tokens that
belong to any user. However, the owner is hardcoded to univ2-core contract, and this only
burns tokens from the caller.

For the second iteration, token contracts also have an owner who can mint and burn them,
even if they belong to a user, but with the owner hardcoded to univ2-core. Also,
contracts/staking-periphery/staking-distributor.clar has an owner who can call
the receive function, which is a post-transfer hook for updating contract balances.

Privileged Roles
These are the privileged roles that we identified on each of the audited contracts.

Page 11 of 13



Velar Audit
January 2024

contracts/univ2-core.clar

Owner
The principal with the owner role can:

● set a new owner via the set-owner function.
● set the principal where fees are sent via the set-fee-to function.
● set the principal where the revenue is shared while swapping via the

set-rev-share function.
● set a new swap fee for a pool via the update-swap-fee function.
● set a new protocol fee for a pool via the update-protocol-fee function.
● set a new share fee for a pool via the update-share-fee function.

The initial owner of the contract is the deployer.

Fee to
The principal with the "fee to" role can:

● collect accrued fees via the collect function.

The "fee-to" of the contract is the deployer, but given that standard principals cannot
implement traits this functionality is not available until a new "fee-to" is set by the owner
via the set-fee-to function.

contracts/univ2-fee-to.clar

Owner
The principal with the owner role can:

● set a new owner via the set-owner function.
● withdraw any SIP010 tokens owned by the contract via the harvest function.

The initial owner of the contract is the deployer.

contracts/wstx-xusd.clar

Owner
A principal with the owner role can:

● set the changeable owner via the set-owner function.
● mint wstx-xusd tokens for any principal via the mint function.
● burn wstx-xusd tokens for any principal via the burn function.

Page 12 of 13



Velar Audit
January 2024

By default there are two owners. One is the .univ2-core contract, implemented in the
contracts/univ2-core.clar file according to the Clarinet.toml file. The other can be
changed and by default is the deployer of the contract.

Changelog
● 2024-01-10 – Initial report based on commit

20708903c01bff64b1b4c23920bfd1b79a72d876.
● 2024-02-09 – Second iteration based on commit

be59a79375bd8fa4aeccf498d223005ccda6c89d. Fixes on first iteration findings
were checked. HI-01 was updated with new locations for this issue.

● 2024-02-22 – Final report updating status for the findings from the second
iteration.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Velar project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 13 of 13


