
DLC-Link Audit
October 2023

By CoinFabrik

v202307

DLC-Link Audit
October 2023

Executive Summary 3
Scope 5
Methodology 5
Findings 6

Issues Status 6
Critical Severity Issues 7

CR-01 Remote Code Execution with Callback Contract 7
CR-02 Unauthenticated storage service API 7
CR-03 DoS Via Infinity Loops At Protocol Wallet 8
CR-04 Arbitrary URL requests at Protocol Wallet 9

High Severity Issues 11
HI-01 Weak Source of Randomness in Attestor Selection 11
HI-02 Credential leak via log mechanism 12
HI-03 Unencrypted API 13

Medium Severity Issues 13
ME-01 Insecure Attestor Key Management 13

Minor Severity Issues 14
MI-01 Floating Solidity Pragma 14
MI-02 Authentication via tx-sender 15
MI-03 Service panic instead of returning a proper error code 15

Centralization 16
Other Considerations 16

Upgrades 16
Changelog 17

Page 2 of 17

DLC-Link Audit
October 2023

Executive Summary
CoinFabrik was asked to audit the files for the DLC-Link project. The audit is based on the
commit d02c87eccca7eb016631344b29377fdf3d78d9a9 of the repository
https://github.com/DLC-link/dlc-stack. Fixes were checked on commit
f16ee8b15a2ce8b2ada45bd7f2e0b64c66a10302 of the same repo.

DLC.link is developed to address the absence of smart contract capabilities in the Bitcoin
ecosystem. Despite Bitcoin's position as the foremost digital asset, it lacks native support
for smart contracts. This has necessitated users to transfer Bitcoin to either a custodian or a
bridge when seeking to use their Bitcoin assets in financial applications. As a result,
custodian failures and bridge hacks have accounted for over $140Bn in losses.

To mitigate these risks, DLC.link has implemented Discreet Log Contracts, an invention from
MIT. This technology allows for the integration of native Bitcoin into applications by placing
the Bitcoin into an on-chain escrow. From this escrowed position, Bitcoin can be interfaced
with and controlled by Stacks, Ethereum and other smart contract platforms. By doing so,
DLC.link creates a "trustless bridge" that facilitates financial transactions.

Page 3 of 17

ID Title Severity Status

CR-01 Remote Code Execution with Callback
Contract

Critical Resolved

CR-02 Unauthenticated storage service API Critical Resolved

CR-03 DoS Via Infinity Loops At Protocol Wallet Critical Resolved

CR-04 Arbitrary URL requests at Protocol Wallet Critical Resolved

HI-01 Weak Source of Randomness in Attestor
Selection

High Acknowledged

HI-02 Credential leak via log mechanism High Resolved

HI-03 Unencrypted API exposure High Resolved

ME-01 Insecure Attestor Key Management Medium Acknowledged

DLC-Link Audit
October 2023

Page 4 of 17

ID Title Severity Status

MI-01 Floating Solidity Pragma Minor Resolved

MI-02 Authentication via tx-sender Minor Resolved

MI-03 Service panic instead of returning a proper
error code

Minor Resolved

DLC-Link Audit
October 2023

Scope
The audited files are from the git repository located at the following repos and commits:

● https://github.com/DLC-link/dlc-stack/:
d02c87eccca7eb016631344b29377fdf3d78d9a9.

○ /attestor/: numeric DLC Attestor service implementation
○ /observer/: blockchain observer

○ /attestor-client/: Attestor client implementation

○ /wallet/: protocol wallet

○ /wallet/wallet-blochain-interface/: Blockchain interface

service

○ /storage/: Storage service

● https://github.com/DLC-link/dlc-solidity/:
414509500c1a46954853e9dc87094a813bb4928e.

○ contracts/DLCManagerV1.sol: Ethereum link contract.
● https://github.com/DLC-link/dlc-clarity/:

a0e37cb4d6200452c43826967eb88f76c0846fda.
○ contracts/dlc-manager-v1.clar: Stacks link contract.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the
expected behavior, and general documentation about the project. Our auditors spent five
weeks auditing the source code provided, which includes understanding the context of use,
analyzing the boundaries of the expected behavior of each program and function,
understanding the implementation by the development team (including dependencies
beyond the scope to be audited) and identifying possible situations in which the code
allows the caller to reach a state that exposes some vulnerability. Without being limited to
them, the audit process included the following analyses.

● Arithmetic errors
● Outdated version of Solidity compiler
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and program interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures

Page 5 of 17

https://github.com/DLC-link/dlc-stack/tree/security-audit-v1
https://github.com/DLC-link/dlc-solidity/
https://github.com/DLC-link/dlc-clarity/

DLC-Link Audit
October 2023

● Centralization and upgradeability

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.
Severity Classification

Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● High: These refer to a vulnerability that, if exploited, could have a substantial
impact, but requires a more extensive setup or effort compared to critical issues.
These pose a significant risk and demand immediate attention.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Page 6 of 17

DLC-Link Audit
October 2023

Critical Severity Issues

CR-01 Remote Code Execution with Callback Contract
Location:

● dlc-clarity/contracts/dlc-manager-v1.clar:95

Classification:
● CWE-20: Improper Input Validation1

The dlc-manager-v1.clar contract is susceptible to a Remote Code Execution (RCE)
through the callback contract. The issue arises due to the absence of validation for the
callback address provided in the set-status-funded() and post-close() functions.
Without this validation, malicious actors could potentially exploit this vulnerability to
execute arbitrary code on the contract.

Steps to Replicate
1. Initiate the creation of a DLC.
2. During DLC creation, store a valid callback address in the contract's state.
3. Later, invoke either the set-status-funded() or post-close() functions with a

different, potentially malicious callback address as the argument.

Recommendation
Implement callback address validation in the set-status-funded() and post-close()
functions. The contract should verify that the provided callback address matches the stored
address associated with the corresponding DLC's UUID.

Status
Resolved. Added the two checks that restrict callback-contract to that connected to the
given DLC.

CR-02 Unauthenticated storage service API
Location:

● storage/api/src/main.rs:54

Classification:
● CWE-306: Missing Authentication for Critical Function2

The storage service provides an open API to read, store and modify events and contracts.
The API does not provide any authentication so any external user can modify, delete or add
any contract and event, just by having the id and corresponding key. These values can be

2 https://cwe.mitre.org/data/definitions/306.html
1 https://cwe.mitre.org/data/definitions/20.html

Page 7 of 17

https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/20.html

DLC-Link Audit
October 2023

found in several ways, for example sniffing connections (as they are not encrypted) or by
using the public API get_contracts() of the same service.

The list of services exposed by the storage API is:

● get_contracts(), create_contract(), update_contract(),

delete_contract(), delete_contracts(),

● get_events(), create_event(), update_event(), delete_event(),

delete_events()

But most APIs except get_contracts() and get_events() do modify the database
without authentication.

Steps to Replicate
1. Get the uuid and key of any contract or event.
2. Using curl or javascript, craft an API request to any sensitive api, for example,

delete_contracts().
3. No authentication is requested to delete all contracts.

Recommendation
Ideally, never expose APIs that modify the internal state without authentication. If needed,
you can implement a challenge/response authentication protocol (I.E. auto generating a
secret) so only clients that created the event or the contract, are allowed to modify/delete it.
Note: this requires that the API connection is encrypted. For unencrypted authentication, a
public key signature authorization might be needed.

Status
Resolved. A complete authentication system was implemented for the storage API. Replay
attacks are avoided using whitelisted nonces.

CR-03 DoS Via Infinity Loops At Protocol Wallet
Location:

● wallet/src/main.rs:117

Classification:
● CWE-835: Loop with unreachable exit condition3

The retry! macro used in the Protocol Wallet checks for return values and retries
indefinitely if there is an error.

As there is no exit condition, this can be used to lock the service in an infinite loop, for
example, specifying an inexistent attestor using the offer() API endpoint. For example,

3 https://cwe.mitre.org/data/definitions/835.html

Page 8 of 17

https://cwe.mitre.org/data/definitions/20.html

DLC-Link Audit
October 2023

this in main.rs:117

let p2p_client: AttestorClient = retry!(

AttestorClient::new(url).await,

10,

"attestor client creation"

);

If the url does not exist, the service will loop indefinitely. This can be used to lock the
service up by repeatedly asking for non-existent attestor URLs until the TCP queue is filled
and the protocol wallet cannot accept more API requests until restart. The retry! macro is
used in other places (for example, retrieving blockchain parameters at line 266 and 273)
but those are not as critical as the DoS in the offer() API.

Steps to Replicate
1. Start the protocol wallet service
2. Do several offer() API call with the following parameters, until the server stop

responding:

curl -X POST http://localhost:8085/offer -H "Content-Type:

application/json" -d '{"uuid": "79", "acceptCollateral":

1234,"offerCollateral":0,"totalOutcomes":100,"attestorList":

"[\"nonexistant\"]" }'

Recommendation
Implement a reasonable retry limit on the macro. The service will still lock up temporarily if
too many requests are made, but not indefinitely.

Status
Resolved. Added a retry limit to the 'retry' macro. Updated wallet code such that there are
limits on failing API calls

CR-04 Arbitrary URL requests at Protocol Wallet
Location:

● wallet/src/main.rs:118

Classification:
● CWE-601: URL Redirection to Untrusted Site4

4 https://cwe.mitre.org/data/definitions/601.html

Page 9 of 17

https://cwe.mitre.org/data/definitions/601.html

DLC-Link Audit
October 2023

When specifying an attestor using the offer() API call, the protocol wallet will download
the public key via an http request (Code at AttestorClient:new()
attestor-client/src/lib.rs:151):

let attestor_key = client_builder

.build()

.map_err(|e| {

DlcManagerError::IOError(std::io::Error::new(

std::io::ErrorKind::NotConnected,

e.to_string(),

))

})?

.get(path)

.send()

.await

And then, the contents of this file is logged directly into the console:

info!("Attestor Pub Key: {}", attestor_key.to_string());

For example: if the specified attestor is in http://www.dlc-link.org/u1, the protocol wallet
will make a http request to http://www.dlc-link.org/u1/public_key.

As this URL can be arbitrary, and the offer() API is public, any external user can cause the
protocol wallet to create any http request to any URL with any parameters.

Steps to Replicate
1. Start the protocol wallet service
2. Execute this command, that causes the protocol wallet to issue a query to

google.com:

curl -X POST http://localhost:8085/offer -H "Content-Type:

application/json" -d '{"uuid": "79", "acceptCollateral":

1234,"offerCollateral":0,"totalOutcomes":100,"attestorList":

"[\"http://www.google.com/search?q=hello\",\"a\"]" }'

Page 10 of 17

DLC-Link Audit
October 2023

It is also possible to download files with arbitrarily large size, causing a denial-of-service
via resource exhaustion (Depending on debug options, the whole file may be logged to the
console).

This can also be used by malicious external users to use the DLC-Link services as a pivot
for malicious activities, by using the service as a relay.

Recommendation
Perform input validation by an attestor URL whitelist so you cannot create an offer with an
arbitrary URL.

Status
Resolved. The Protocol Wallet performs a check on the incoming request, and only
proceeds if the provided attestors are in a whitelist.

High Severity Issues

HI-01 Weak Source of Randomness in Attestor Selection
Location:

● dlc-solidity/contracts/AttestorManager.sol:95

Classification:
● SWC-120: Weak Sources of Randomness from Chain Attributes5

● CWE-330: Use of Insufficiently Random Values6

The randomNumber() function is used to select attestors for the DLC based on the block
timestamp. This weak randomness source enables potential exploitation, wherein a
malicious block builder can manipulate the timestamp and therefore the attestor selection.

If successfully exploited, a malicious actor can repeatedly be selected as an attestor or
ensure specific attestors are consistently selected, compromising the integrity and fairness
of the DLC attestor selection process. This can lead to centralization or collusion risks in the
DLC.

Steps to Replicate
1. Become a block builder or miner.
2. Wait for a transaction creating a DLC.
3. Manipulate block’s timestamp to influence the random number generation. Try with

as many timestamps as it is possible until you get the best result where attestors
under your control are selected.

4. Use the attestors for signing a false outcome which is beneficial for you.

6 https://cwe.mitre.org/data/definitions/330.html
5 https://swcregistry.io/docs/SWC-120/

Page 11 of 17

https://cwe.mitre.org/data/definitions/330.html
https://swcregistry.io/docs/SWC-120/

DLC-Link Audit
October 2023

Block headers, specifically the timestamp, are not entirely secure as a source of randomness
because they can be influenced by the block builder (or miner). Although Ethereum has
some mechanisms to discourage drastic deviations from the true time, small manipulations
are feasible. This allows a block builder with knowledge of how the randomness is being
derived to have an advantage in anticipating or manipulating the outcome.

Recommendation
Use a Verifiable Random Function (VRF) for random number generation. A commit-reveal
scheme would also be an option. However, for the given scenario, a VRF would be a more
suitable solution, since they provide immediate, unpredictable randomness on-chain
without relying on external parties. While commit-reveal offers randomness, it requires
multiple participants and multiple transactions, introducing complexity and potential points
of failure. The DLC creation's single-participant nature further complicates this method.
Chainlink's VRF on Ethereum provides a robust and efficient means to secure the attestor
selection process.

Status
Acknowledged. On-chain attestor management will be deprecated in the future. Also, this
attack was considered unlikely because an attacker needs to be in control of the majority of
attestors.

HI-02 Credential leak via log mechanism
Location:

● attestor/src/lib.rs:54

Classification:
● CWE-532: Insertion of Sensitive Information into Log File

When creating an attestor, the initialization code logs the private key contents as a debug
message. Log files often have less stringent security measures in place during creation,
such as backup procedures or debugging processes. As a result, if these log files fall into
the hands of unauthorized individuals, they could gain access to the private keys contained
within.

Steps to Replicate
1. Create an attestor
2. Inspect the log file looking for the message “[WASM-ATTESTOR]: Creating

new attestor with storage_api_enabled:” where the secret key is
written.

Recommendation
Remove the private key from the log file, or replace it with a representation of it like
‘PRIVKEY’.

Page 12 of 17

DLC-Link Audit
October 2023

Status
Resolved. Removed the logging of the secret key.

HI-03 Unencrypted API
Location:

● wallet/src/main.rs:393

● wallet/src/main.rs:279

● storage/api/src/main.rs:65

● wallet-blockchain-interface/src/http/server.ts:11

Classification:
● CWE-319: Cleartext Transmission of Sensitive Information

The protocol wallet employs plain http to export its API. By default, the service binds to
0.0.0.0:8085 which exposes the API without encryption on every network interface,
leaving communication vulnerable to interception by malicious actors.

The same happens in the storage service, but binding to address 0.0.0.0:8100 and a
similar problem is in the wallet-blochain-interface service.

Recommendation
To ensure the security of data transmission over public networks, it is recommended to
utilize the Transport Layer Security (TLS) protocol when exposing the API. A commonly
employed approach involves binding the API to a local port and then making it accessible
through a reverse HTTPS proxy tool such as Nginx.

If the API is only used locally, bind the service to a local interface like 127.0.0.1.

Status
Resolved. The Protocol Wallet no longer has a public API, it is restricted to the local
interface only. Also, the services run behind an nginx reverse proxy, providing additional
security.

Medium Severity Issues

ME-01 Insecure Attestor Key Management
Location:

● attestor/src/lib.rs:47

● attestor/observer/dist/src/services/attestor.service.js:26

Classification:
● CWE-922: Insecure Storage of Sensitive Information

Page 13 of 17

DLC-Link Audit
October 2023

The attestor service code retrieves the secret key from an environment variable.

Recommendation
For such sensitive credentials it's desirable to use a safer storage mechanism, like a Vault or
HSMs. If possible, never store private key material in the service memory, always using an
external module to realize cryptographic primitives. In this way, a malicious attacker won't
be able to access the credentials even if he can access the server or cloud environment.

Status
Acknowledged. As this requires coordination with third-party attestors, it was decided to
address this later, moving to an off-app solution.

Minor Severity Issues

MI-01 Floating Solidity Pragma
Location:

● dlc-solidity/contracts/AttestorManager.sol

● dlc-solidity/contracts/DLCLinkCompatibleV1.sol

● dlc-solidity/contracts/DLCManagerV1.sol.sol

Classification:
● SWC-103: Floating Pragma7

● CWE-664: Improper Control of a Resource Through its Lifetime8

The smart contracts use a floating Solidity pragma. This implies that these contracts are not
bound to a specific compiler version. Although this can be advantageous for flexibility and
compatibility, especially for libraries, it poses potential risks for contracts that are deployed
in live environments.

If contracts get deployed using an unintended compiler version, it might inadvertently
introduce bugs or vulnerabilities that can negatively affect the system's integrity. It is
paramount that contracts be deployed with the same compiler version and flags they've
been rigorously tested with to ensure predictable and secure behavior.

Recommendation
Lock the pragma version in the smart contracts. This ensures that the contracts are always
compiled with the intended compiler version.

Status
Resolved. All contracts updated to the latest solidity version.

8 https://cwe.mitre.org/data/definitions/664.html
7 https://swcregistry.io/docs/SWC-103/

Page 14 of 17

https://cwe.mitre.org/data/definitions/664.html
https://swcregistry.io/docs/SWC-103/

DLC-Link Audit
October 2023

MI-02 Authentication via tx-sender
Location:

● dlc-clarity/contracts/dlc-manager-v1.clar:151, 176, 201, 225, 252,

274, 284

The system utilizes tx-sender for its authentication processes. This method, while
functional, presents latent vulnerabilities, particularly exposing actors within the system to
threats known as phishing .9

Actors could inadvertently activate a malicious contract. Once activated, the deceptive
contract can access and initiate certain functions, presenting actions as if they were done by
the original actor. This impersonation potential poses risks, depending on the specific
function being accessed.

Recommendation
It is advisable to switch from using tx-sender to contract-caller for a more reliable and
secure authentication method. Furthermore, introducing a mapping for trusted callers can
add an extra layer of security, particularly if the system needs to interact with specific
intermediary contracts.

Status
Resolved. Changed authentication from tx-sender to contract-caller.

MI-03 Service panic instead of returning a proper error code
Location:

● wallet/src/main.rs:198

● wallet/src/main.rs:240

When parsing input JSON, the Protocol Wallet occasionally experiences a panic() rather
than catching the exception and returning an error message. While this does not directly
affect the service since only the child thread is terminated, unhandled exceptions could
potentially bring down the entire service if they occur in the main thread.

Steps to Replicate
1. Start the protocol wallet service
2. Execute this command, that causes the Protocol Wallet to panic and return

an empty reply:

curl -X POST http://localhost:8085/offer -H "Content-Type:

application/json" -d '{"uuid": "79", "acceptCollaterl":

1234,"offerCollateral":123,"totalOutcomes":23333,"attestorList":"test"}'

9 https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/

Page 15 of 17

https://www.coinfabrik.com/blog/tx-sender-in-clarity-smart-contracts/

DLC-Link Audit
October 2023

(Notice that “acceptCollaterl” is the field that causes the parser to panic)

Recommendation
You can replace unwrap() with ? operator to avoid panics in Rust.

Status
Resolved. Every instance of panic has been replaced by better error handling and error
message passthrough.

Centralization
The provided DLCManagerV1 solidity contract has the following roles:

DLC_ADMIN_ROLE: This role can pause and unpause the contract. It is assigned to the
contract creator.

DEFAULT_ADMIN_ROLE: Default admin role. Also assigned to the contract creator.

WHITELISTED_CONTRACT: This role can create a DLC,

WHITELISTED_WALLET: This role can set the status as funded, and close a DLC.

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited programs, token holders or project investors.

1. Consider adding authentication to all exposed APIs
2. Consider validation of all API inputs, even between internal services (Like Protocol

Wallet and wallet-blockchain-interface).
3. Consider exporting all API and doing all requests using TLS (https protocol).

Upgrades
The Clarity and Solidity contracts lack any upgrade mechanism.

Changelog
● 2023-09-29 – Preview report based on commit

1727a9cd89ab58ee3fb51c761f0d3bda9b7710e8.
● 2023-10-06 – Final version based on commit

d02c87eccca7eb016631344b29377fdf3d78d9a9.

Page 16 of 17

DLC-Link Audit
October 2023

● 2023-11-29 – Update based on fixes at commit
f16ee8b15a2ce8b2ada45bd7f2e0b64c66a10302.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the DLC-Link project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a code faultlessness guarantee.

Page 17 of 17

