
Aconcagua Audit
Collateral Contract

September 2023

By CoinFabrik

v202307



Aconcagua Audit
September 2023

Executive Summary 3
Scope 3
Contracts Descriptions 3
Methodology 4
Findings 5

Severity Classification 5
Issues Status 6
Critical Severity Issues 6

CR-01 Incorrect Usage of Initializer Modifier in Upgradable Contract 6
Medium Severity Issues 7

ME-01 Denial Of Service Because of Invalid Token Addresses 7
ME-02 Role Revocation 7

Minor Severity Issues 8
MI-01 Floating Solidity Pragma 8
MI-02 Manipulation of Start Time Period by Aconcagua Role 9

Enhancements 10
EN-01 Typo in Contract Names 10
EN-02 Utilization of Proper Initialization Functions 10
EN-03 Unnecessary Type Casting 11
EN-04 Missing Pausing Functionality 12
EN-05 Implementation of Automated Testing 12

Other Considerations 13
Centralization 13
Upgrades 13

Changelog 13

Page 2 of 13



Aconcagua Audit
September 2023

Executive Summary
CoinFabrik was asked to audit the contracts for the Aconcagua project.

During this audit we found one critical issue, two medium issues and two minor issues.
Also, several enhancements were proposed.

Scope
The audited files are from the git repository located at
https://github.com/aconcagua-finance/Aconcagua-API-CONTRACTS-POLYGON. The audit is
based on the commit cf54a197c380cc667a19724b902295e7574606c0. Fixes reviewed on
commit 119c0d88afba89b3bbe73c090f14cea8b4b101ee.

The scope for this audit includes and is limited to the following files:

● contracts/ColateralContract.sol: Contract for managing collateral.
● contracts/IColateralContract.sol: Interface for ColateralContract.
● contracts/ColateralProxy.sol: Upgradeable Proxy for ColateralContract.
● contracts/ColateralProxyAdmin.sol: Admin for Upgradeable Proxy.

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

Contracts Descriptions
● ColateralContract.sol:

1. initialize(): Initializes the contract with initial token addresses, roles,
wallet addresses, and other parameters. Only callable once due to the
initializer modifier.

2. version(): Returns the version of the contract as a string, which is "1.0.0".
3. setWithdrawWalletAddress(): Allows setting a new withdrawal wallet

address. Can only be called by an account with the ACONCAGUA_ROLE.
4. setRescueWalletAddress(): Allows setting a new rescue wallet address.

Can only be called by an account with the ACONCAGUA_ROLE.
5. setStartTimePeriod(): Sets the start time of the period and adjusts the

end time accordingly. Restricted to ACONCAGUA_ROLE.
6. setTokenAddress(): Updates the address of a specific token and emits a

TokenAddressChange event. Restricted to ACONCAGUA_ROLE.
7. setWithdrawalLimitPerPeriod(): Sets the withdrawal limit for a given

token per period and emits a WithdrawalLimitChange event. Restricted to
ACONCAGUA_ROLE.

Page 3 of 13

https://github.com/aconcagua-finance/Aconcagua-API-CONTRACTS-POLYGON


Aconcagua Audit
September 2023

8. swapExactInputs(): Performs a series of token swaps using a
Uniswap-equivalent router. Restricted to SWAPPER_ROLE.

9. withdraw(): Allows withdrawal of a specified amount of a token, checking
against period limits. Restricted to LENDER_LIQ_ROLE.

10. balanceOf(): Returns the balance of a specific token held by the contract.
11. getBalances(): Returns the balances of ETH, USDC, USDT, WBTC, and WETH

held by the contract.
12. rescue(): Transfers a specified amount of a token to the rescue wallet

address. Restricted to RESCUER_ROLE.
13. getRoleCount(): Returns the total number of unique roles in the contract.
14. getRoleByIndex(): Returns a role by its index in the enumerable set of

roles.
15. _checkPeriodLimits(): Internal function to update the withdrawal limits

for tokens if the current time has exceeded the end of the period.

The contract also includes various state variables, mappings, and constants to manage
tokens, roles, withdrawal limits, and period timings.

Methodology
CoinFabrik was provided with the source code. Our auditors spent one week auditing the
source code provided, which includes understanding the context of use, analyzing the
boundaries of the expected behavior of each contract and function, understanding the
implementation by the development team (including dependencies beyond the scope to be
audited) and identifying possible situations in which the code allows the caller to reach a
state that exposes some vulnerability. Without being limited to them, the audit process
included the following analyses.

● Arithmetic errors
● Outdated version of Solidity compiler
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

Page 4 of 13



Aconcagua Audit
September 2023

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

CR-01 Incorrect Usage of Initializer Modifier in
Upgradable Contract

Critical Resolved

ME-01 Denial Of Service Because of Invalid Token
Addresses

Medium Resolved

ME-02 Role Revocation Medium Mitigated

MI-01 Floating Solidity Pragma Minor Resolved

MI-02 Manipulation of Start Time Period by
Aconcagua Role

Minor Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Page 5 of 13



Aconcagua Audit
September 2023

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision. The reported risk is accepted by the development team.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues

CR-01 Incorrect Usage of Initializer Modifier in Upgradable
Contract
Location:

● contracts/ColateralContract.sol:53

The CollateralContract utilizes an initializer modifier in both the constructor and an
initialize() function. The initializer modifier is designed to ensure that initialization
logic in upgradeable contracts is only run once. In the current implementation, the contract
is initialized at the time of deployment due to the presence of the initializer modifier in
the constructor. This means that any subsequent calls to the initialize() function, or any
other function using the initializer modifier, will be reverted, leading to a loss of
functionality and issues in managing the contract state.

Steps to Replicate
1. Deploy the CollateralContract.
2. After deployment, attempt to call the initialize() function.
3. Observe that the transaction is reverted.

Recommendation
Remove the initializer modifier from the constructor and rely solely on the
initialize() function for initializing the contract. This adjustment ensures that the
contract is not automatically initialized at the time of deployment, allowing for appropriate
initialization when required. Local testing (as proposed in EN-05) and testnet deployment
are advised in order to avoid proxy issues on production.

Page 6 of 13



Aconcagua Audit
September 2023

When applying this fix, the implementation contract should not be left uninitialized.
Instead, _disableInitializers() needs to be placed in the constructor body in order to
avoid an attacker taking ownership of that contract.

Status
Resolved. Fixed according to the recommendation.

Medium Severity Issues

ME-01 Denial Of Service Because of Invalid Token Addresses
Location:

● contracts/ColateralContract.sol:155

Classification:
● SWC-113: DoS with Failed Call1

● CWE-703: Improper Check or Handling of Exceptional Conditions2

The setTokenAddress() function in the examined smart contract allows an account with
the ACONCAGUA_ROLE role to set the address associated with a specific token symbol. The
possibility of assigning an invalid or malicious address to a token symbol poses a notable
risk to the integrity of contract operations.

While direct loss of funds is not an immediate concern due to the allowance mechanism in
place for token transfers, the integrity of the system’s operations can be severely
compromised. Setting an invalid or non-compliant address can disrupt the functioning of
any interactions with the associated token, potentially leading to a denial of service for
users and other contract roles relying on this token.

Recommendation
Define critical token addresses as immutable or implement a time-lock mechanism. This
approach will either prevent unintended alterations to token addresses or allow ample time
for irregularities to be detected and addressed, thereby enhancing the security and integrity
of the contract's operations.

Status
Resolved. setTokenAddress() function removed and token addresses are set at
initialization. The values cannot be changed.

2https://cwe.mitre.org/data/definitions/703.html
1 https://swcregistry.io/docs/SWC-113/

Page 7 of 13

https://cwe.mitre.org/data/definitions/703.html
https://swcregistry.io/docs/SWC-113/


Aconcagua Audit
September 2023

ME-02 Role Revocation
Location:

● contracts/ColateralContract.sol:111-114

Classification:
● CWE-284: Improper Access Control3

The current implementation of the smart contract allows any member of a role group to
revoke role membership of others within the same group. This design poses a risk as it
enables any admin to unilaterally grant or revoke access to significant functionalities,
potentially leading to unauthorized access or denial of service.

Recommendation
Implement additional safeguards such as multi-signature requirements or time locks for
sensitive role assignments and revocations. Otherwise, evaluate the necessity of allowing
every member within a role group to modify membership, and restrict this ability if it is not
essential for the operation of the contract.

Status
Mitigated. These roles will be assigned to multi signature wallets. Therefore, the likelihood
is lower.

Minor Severity Issues

MI-01 Floating Solidity Pragma
Location:

● contracts/ColateralContract.sol

● contracts/IColateralContract.sol

● contracts/ColateralProxy.sol

● contracts/ColateralProxyAdmin.sol

Classification:
● SWC-103: Floating Pragma4

● CWE-664: Improper Control of a Resource Through its Lifetime5

The smart contracts use a floating Solidity pragma. This implies that these contracts are not
bound to a specific compiler version. Although this can be advantageous for flexibility and
compatibility, especially for libraries, it poses potential risks for contracts that are deployed
in live environments.

5 https://cwe.mitre.org/data/definitions/664.html
4 https://swcregistry.io/docs/SWC-103/
3 https://cwe.mitre.org/data/definitions/284.html

Page 8 of 13

https://cwe.mitre.org/data/definitions/664.html
https://swcregistry.io/docs/SWC-103/
https://cwe.mitre.org/data/definitions/284.html


Aconcagua Audit
September 2023

If contracts get deployed using an unintended compiler version, it might inadvertently
introduce bugs or vulnerabilities that can negatively affect the system's integrity. It is
paramount that contracts be deployed with the same compiler version and flags they've
been rigorously tested with to ensure predictable and secure behavior.

Recommendation
Lock the pragma version in the smart contracts. This ensures that the contracts are always
compiled with the intended compiler version.

Status
Resolved. Fixed according to the recommendation.

MI-02 Manipulation of Start Time Period by Aconcagua Role
Location:

● contracts/ColateralContract.sol:148

The setStartTimePeriod() function is capable of being called by an admin (with
Aconcagua role) at any moment, even after the start time of the period has been initiated.
While this does not lead to an issue with the contract itself, it does introduce uncertainties
around the trustworthiness of period values. Parties interacting with the contract must be
aware that the Aconcagua role has the ability to manipulate the start and end times of
periods, potentially affecting their interactions or strategies.

Recommendation
setStartTimePeriod() function should not be able to set a new start time in the past.

Status
Resolved. Periods were removed from the codebase.

Page 9 of 13



Aconcagua Audit
September 2023

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Typo in Contract Names Not implemented

EN-02 Utilization of Proper Initialization Functions Not implemented

EN-03 Unnecessary Type Casting Not implemented

EN-04 Missing Pausing Functionality Not implemented

EN-05 Implementation of Automated Testing Not implemented

EN-01 Typo in Contract Names
Location:

● contracts/ColateralContract.sol

● contracts/IColateralContract.sol

● contracts/ColateralProxy.sol

● contracts/ColateralProxyAdmin.sol

File, contract, and interface names have a typo in the word “collateral”, which is currently
written as “colateral”.

Recommendation
Rename files and contracts.

Status
Not implemented.

EN-02 Utilization of Proper Initialization Functions
Location:

● contracts/ColateralContract.sol

Page 10 of 13



Unset

Aconcagua Audit
September 2023

The examined smart contract employs __AccessControl_init_unchained() and
__ReentrancyGuard_init_unchained() for the initialization of Access Control and
Reentrancy Guard. However, utilizing the __init_unchained() variants directly can be
unconventional and prone to human error, especially if additional initializers are added in
the future.

The more conventional and recommended approach is to use the __init() function, which
internally calls the __init_unchained() function. This ensures a more structured
initialization sequence and is less error-prone, particularly when dealing with multiple
initializers.

Recommendation
Modify the initialization sequence to utilize the __init() functions for both Access Control
and Reentrancy Guard. This change aligns with best practices and provides a safer, more
structured, and less error-prone initialization process.

// Current Initialization
__AccessControl_init_unchained();
__ReentrancyGuard_init_unchained();

// Recommended Initialization
__AccessControl_init();
__ReentrancyGuard_init();

Status
Not implemented.

EN-03 Unnecessary Type Casting
Location:

● contracts/ColateralContract.sol:180

The contract contains an unnecessary type casting where tokenIn is explicitly cast to an
address, even though tokenIn is already of type address.

Recommendation
Remove the unnecessary type casting of tokenIn since it is already an address.

Status
Not implemented.

Page 11 of 13



Aconcagua Audit
September 2023

EN-04 Missing Pausing Functionality
Location:

● contracts/ColateralContract.sol:26

The ColateralContract currently defines a PAUSER_ROLE, but it is not associated with any
pausing functionality in the contract. This role should either be linked to the actual pausing
of contract interactions for security purposes or be removed if deemed unnecessary.

Recommendation
Evaluate the necessity of the PAUSER_ROLE in the ColateralContract. If essential,
implement associated pausing functionality; if not, remove the unused role to maintain code
clarity and cleanliness.

Status
Not implemented.

EN-05 Implementation of Automated Testing
The project currently lacks a comprehensive automated testing system, potentially allowing
errors and vulnerabilities to go undetected. Implementing a diverse range of automated
tests will enhance early issue detection, improve system reliability, and ensure consistent
functionality verification.

Recommendation
Implement a comprehensive automated testing framework incorporating unit, integration,
and end-to-end tests. Integrate this framework into the CI/CD pipeline for timely issue
detection and resolution, thereby improving the overall quality and reliability of the system.

Status
Not implemented.

Page 12 of 13



Aconcagua Audit
September 2023

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Centralization
The provided ColateralContract has various roles such as ACONCAGUA_ROLE,
LENDER_LIQ_ROLE, and others, which are assigned specific permissions, thereby restricting
key functions like token swapping, withdrawals, and parameter modifications to designated
addresses. These roles have the ability to control fund management, set parameters, and
perform rescue operations.

Upgrades
The given smart contract employs OpenZeppelin’s upgradeable contracts library, which is
the upgrade mechanism. Initializer functions are used instead of constructors to preserve
the contract’s storage layout across upgrades, thereby allowing modification and addition
of functionalities.

Changelog
● 2023-09-26 – Initial report based on commit

cf54a197c380cc667a19724b902295e7574606c0.
● 2023-11-06 – Final report based on commit

119c0d88afba89b3bbe73c090f14cea8b4b101ee.

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Aconcagua project since CoinFabrik has not reviewed its
platform. Moreover, it does not provide a smart contract code faultlessness
guarantee.

Page 13 of 13


