
Mintra Audit
September 2023

By CoinFabrik

v202307



Mintra Audit
September 2023

Executive Summary 3
Scope 3
Methodology 4
Findings 5

Severity Classification 5
Issues Status 6
Critical Severity Issues 6
Medium Severity Issues 6

ME-01 No Safe Transfers 6
Minor Severity Issues 7

MI-01 Use EnumerableMap 7
MI-02 Unrestrained ERC20 Allowances 7
MI-03 Marketplace Payout Denial of Service 8
MI-04 FeeSplitter.flush() Denial of Service 8
MI-05 FeeSplitter DEXes Derived Addresses 9

Enhancements 9
EN-01 Royalties Coupling 10
EN-02 Configurable Routers 10
EN-03 FeeSplitter.flush() Improvements 11

Other Considerations 12
Previous Audit 12
Centralization 12
Upgrades 12
Privileged Roles 12

Marketplace 13
FeeSplitter 13

Marketplace Items 14
Marketplace Royalties 15
FeeSplitter Slippage Calculation 16

Changelog 16

Page 2 of 17



Mintra Audit
September 2023

Executive Summary
CoinFabrik was asked to audit the contracts for the Mintra project.

During this audit we found no critical issues, one medium issue and several minor issues.
Also, several enhancements were proposed.

The medium issue and most of the minor issues were resolved by the development team.
The rest of the minor issues are mitigated. All the enhancement proposals were either
implemented or partially implemented.

Scope
The audited files are from the git repository located at
https://gitlab.com/gerawrdog/mintra-solidity.git.

The scope for this audit includes and is limited to the following files:

● contracts/feesplitter/FeeSplitter.sol: The FeeSplitter contract distributes
transaction fees among addresses, performs token swaps, burns, and manages
rewards, ensuring equitable distribution and proper ecosystem incentives.

● contracts/marketplace/ERC1155Marketplace.sol: Marketplace for ERC1155
assets.

● contracts/marketplace/ERC721Marketplace.sol: Marketplace for ERC721
assets.

● contracts/marketplace/Marketplace.sol: It contains the base abstract contract
used to implement marketplaces.

● contracts/msi/libraries/NFTDescriptor.sol: It contains a library used to
generate the token uri for the MSI token.

No other files in this repository were audited. Its dependencies are assumed to work
according to their documentation. Also, no tests were reviewed for this audit.

The following commits were reviewed, in order, as part of this audit:

1. 7d59c9f492c9d95f479320b41ddfe064ba45b7e9

2. 664f4434721671eb567cdc55da332f732fc9289a

3. 4fa19210a8a8f42fd9b9bca0119b64c84c68fedb

4. c53135eb77234891c0de62a5b40651d58027c035

5. e523b30716a5568177dce28c5d85e98613fe5ab8

6. 51f53e5a31b20ad6ae988a1b6a541441f87b828d

7. 42a8714a66542781d28a0563372c1051f363f4ea

8. ead5ca13fdc216f0b0613ecd782509faae0601cb

9. 35f52b6fa93b097cb767b168991095659f9a33cc

Page 3 of 17

https://gitlab.com/gerawrdog/mintra-solidity.git


Mintra Audit
September 2023

10. 2d2493ab1077924a8b519b51b4a765df3c714b34

11. 6a493d28af6945a824b3904b71e7adedf6b505d5

12. 11023b21151ca1af63156c1fb90cd8a6ec439524

13. b7f13c1d8bb6b12e9fcf34090dc29248d597c5f5

The final status of all the issues and enhancements stated in this report corresponds to the
latest commit in this list. All the listed commits were at the top of the main branch when
we used them to conduct the audit.

Methodology
CoinFabrik was provided with the source code, including automated tests that define the
expected behavior. Our auditors spent four weeks auditing the source code provided, which
includes understanding the context of use, analyzing the boundaries of the expected
behavior of each contract and function, understanding the implementation by the
development team (including dependencies beyond the scope to be audited) and
identifying possible situations in which the code allows the caller to reach a state that
exposes some vulnerability. Without being limited to them, the audit process included the
following analyses.

● Arithmetic errors
● Outdated version of Solidity compiler
● Race conditions
● Reentrancy attacks
● Misuse of block timestamps
● Denial of service attacks
● Excessive gas usage
● Missing or misused function qualifiers
● Needlessly complex code and contract interactions
● Poor or nonexistent error handling
● Insufficient validation of the input parameters
● Incorrect handling of cryptographic signatures
● Centralization and upgradeability

All the issues and enhancement proposals were communicated to the development team in
the course of the audit and they provided the corresponding fixes. After each fix was
provided we checked that the fix was properly applied and that no additional issues were
introduced. This report includes the final status of all the reported issues and enhancement
proposals.

Page 4 of 17



Mintra Audit
September 2023

Findings
In the following table we summarize the security issues we found in this audit. The severity
classification criteria and the status meaning are explained below. This table does not
include the enhancements we suggest to implement, which are described in a specific
section after the security issues.

ID Title Severity Status

ME-01 No Safe Transfers Medium Resolved

MI-01 Use EnumerableMap Minor Resolved

MI-02 Unrestrained ERC20 Allowances Minor Resolved

MI-03 Marketplace Payout Denial of Service Minor Mitigated

MI-04 FeeSplitter.flush() Denial of Service Minor Mitigated

MI-05 FeeSplitter DEXes Derived Addresses Minor Resolved

Severity Classification
Security risks are classified as follows:

● Critical: These are issues that we manage to exploit. They compromise the system
seriously. Blocking bugs are also included in this category. They must be fixed
immediately.

● Medium: These are potentially exploitable issues. Even though we did not manage
to exploit them or their impact is not clear, they might represent a security risk in the
near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult to take
advantage of, but might be exploited in combination with other issues. These kinds
of issues do not block deployments in production environments. They should be
taken into account and be fixed when possible.

Page 5 of 17



Mintra Audit
September 2023

Issues Status
An issue detected by this audit has one of the following statuses:

● Unresolved: The issue has not been resolved.

● Acknowledged: The issue remains in the code, but is a result of an intentional
decision.

● Resolved: Adjusted program implementation to eliminate the risk.

● Partially resolved: Adjusted program implementation to eliminate part of the risk.
The other part remains in the code, but is a result of an intentional decision.

● Mitigated: Implemented actions to minimize the impact or likelihood of the risk.

Critical Severity Issues
No issues found.

Medium Severity Issues

ME-01 No Safe Transfers
Found on commit: 7d59c9f492c9d95f479320b41ddfe064ba45b7e9
Location:

● contracts/marketplace/ERC1155Marketplace.sol: 242

● contracts/marketplace/ERC721Marketplace.sol: 192

● contracts/marketplace/Marketplace.sol: 383,386,533

Some ERC20 tokens return false instead of raising an error when the operation fails. This
possibility is not handled in any of the marketplaces code and may lead to transferring
assets to an attacker without obtaining its payment.

This issue's severity was lowered, given that all the ERC20 tokens used to do payments in
the marketplaces are vetted by the wizard.

Recommendation
Use the OpenZeppelin SafeERC20 library to interact with the ERC20 token contracts. The1

SafeERC20 library is designed to transparently handle this problem. This is especially
important when doing token transfers.

1 https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20

Page 6 of 17

https://docs.openzeppelin.com/contracts/4.x/api/token/erc20#SafeERC20


Mintra Audit
September 2023

Status
Resolved. Fixed according to the recommendation. Fix checked on commit
4fa19210a8a8f42fd9b9bca0119b64c84c68fedb.

Minor Severity Issues

MI-01 Use EnumerableMap
Found on commit: 7d59c9f492c9d95f479320b41ddfe064ba45b7e9
Location:

● contracts/marketplace/Marketplace.sol: 77-78,581-597,599-602

The allowedTokenAddresses and allowedTokenAddressesArray variables, defined in
lines 77-78 of contracts/marketplace/Marketplace.sol, show a reimplementation of
OpenZeppelin's EnumerableMap library . But this reimplementation is not ideal. In2

particular, the implementation of the addTokenAddress() function in lines 581-597 should
not need the array iteration in lines 586-590 and it would be trivial if using EnumerableMap.
On the other hand, it may not be necessary at all given that neither the
allowedTokenAddressesArray contents nor the allowedAssets() function are not being
used anywhere else in the code, so it is likely that instead of using EnumerableMap, just
eliminating the allowedTokenAddressesArray variable is good enough.
This is marked as a minor issue since if the allowedTokenAddressesArray grows too much
then no new token addresses can be added, as gas may be exhausted.

Recommendation
Evaluate if it is required to iterate on the elements of the allowedTokenAddresses
mapping. If so, use EnumerableMap. If not, eliminate the allowedTokenAddressesArray
variable and its uses.

Status
Resolved. The allowedTokenAddressesArray variable was removed. Fix checked on
commit 664f4434721671eb567cdc55da332f732fc9289a.

MI-02 Unrestrained ERC20 Allowances
Found on commit: 7d59c9f492c9d95f479320b41ddfe064ba45b7e9
Location:

● contracts/feesplitter/FeeSplitter.sol: 439-440

2 https://docs.openzeppelin.com/contracts/4.x/api/utils#EnumerableMap

Page 7 of 17

https://docs.openzeppelin.com/contracts/4.x/api/utils#EnumerableMap


Mintra Audit
September 2023

In the FeeSplitter.approveERC20() function the plsxRouterV1 and plsxRouterV2
addresses are awarded an infinite allowance for the erc20Address token on behalf of the
contract. This is not a good security practice, as the minimum required capabilities should
be given to external contracts.

Recommendation
Only give enough allowance to the addresses, and only when the operation is about to
occur. In the case of smart contracts, allowance should be given just prior to the function
invocation and revoked afterwards.

Status
Resolved. Now the approval is made in the processErc20() function for the funds that are
being exchanged. The approveErc20() function was removed. Fix checked on commit
42a8714a66542781d28a0563372c1051f363f4ea.

MI-03 Marketplace Payout Denial of Service
Found on commit: 664f4434721671eb567cdc55da332f732fc9289a
Location:

● contracts/marketplace/Marketplace.sol: 360,367

The payout process, defined in the Marketplace.payout() function, can be interrupted by
the feeSplitter when executing payable(feeSplitterAddress).call{value:

marketFee}("") in line 360. It might also be interrupted if the
IERC20(_tokenAddress).transfer(feeSplitterAddress, marketFee); in line 367
fails.

This issue severity was lowered because:

● the feeSplitter is set in the constructor, and cannot be changed afterwards.
● the ERC20 token used in line 367 is whitelisted by the wizard.

This issue is related to the ME-01 issue of the June 2023 audit.

Recommendation
Use the withdrawal pattern to transfer funds to the feeSplitter.

Status
Mitigated. The development team informed us that the feeSplitter passed in the
contract's constructor corresponds to the FeeSplitter contract, also reviewed in this audit.

MI-04 FeeSplitter.flush() Denial of Service
Found on commit: c53135eb77234891c0de62a5b40651d58027c035
Location:

● contracts/feesplitter/FeeSplitter.sol: 208,212

Page 8 of 17



Mintra Audit
September 2023

The withdrawal pattern was not used to transfer funds to the rootAddress and the
mintStakingAddress in the FeeSplitter.flush() function. This makes the flush
procedure susceptible to being interrupted by the rootAddress or the
mintStakingAddress accounts.
This issue's severity was lowered given that the rootAddress and the
mintStakingAddress are set in the contract's constructor and cannot be changed
afterwards. This issue is related to MI-01 in the June 2023 audit.

Recommendation
Use the withdrawal pattern to transfer funds to the rootAddress and the
mintStakingAddress accounts.

Status
Mitigated. The development team informed us that they control the rootAddress and the
mintStakingAddress accounts.

MI-05 FeeSplitter DEXes Derived Addresses
Found on commit: e523b30716a5568177dce28c5d85e98613fe5ab8
Location:

● contracts/feesplitter/FeeSplitter.sol: 156-157,160-161

Both the factories (pulseXFactoryV1, pulseXFactoryV2) and the MINT pairs
(plsMintPairV1, plsMintPairV2) can be obtained from the routers (plsxRouterV1,
plsxRouterV2). A failure to set the proper addresses may lead to an incorrect contract
behavior.
This issue is considered minor as we consider it similar to a lack of zero-check in a
constructor.

Recommendation
Instead of receiving the factories and routers via constructor parameters, obtain them from
the routers instead.

Status
Resolved. Now the factory and pair are obtained from the router. Fix checked on commit
42a8714a66542781d28a0563372c1051f363f4ea.

Enhancements
These items do not represent a security risk. They are best practices that we suggest
implementing.

ID Title Status

EN-01 Royalties Coupling Implemented

Page 9 of 17



Mintra Audit
September 2023

ID Title Status

EN-02 Configurable Routers Implemented

EN-03 FeeSplitter.flush() Improvements Partially
implemented

EN-01 Royalties Coupling
Found on commit: 664f4434721671eb567cdc55da332f732fc9289a
Location:

● contracts/marketplace/Marketplace.sol: 410-411

When setting a new receiver via the Marketplace.createOrUpdateRoyality() function,
the royalties basis points need to be decreased as well, as this is enforced in the function
code.

Recommendation
Change the _royaltyInBasisPoints <

royalties[_collectionAddress].basisPoints check in line 410 to be
_royaltyInBasisPoints <= royalties[_collectionAddress].basisPoints.

Status
Implemented. Fixed according to the recommendation. Fix checked on commit
4fa19210a8a8f42fd9b9bca0119b64c84c68fedb.

EN-02 Configurable Routers
Found on commit: e523b30716a5568177dce28c5d85e98613fe5ab8
Location:

● contracts/feesplitter/FeeSplitter.sol

The FeeSplitter contract has the logic to handle 2 routers, because currently there are 2
different routers in the PLS blockchain. But it is not a given that those 2 will be the only 2
trustworthy routers in the blockchain.

Recommendation
Allow the vulcan to configure other routers to be used in the FeeSplitter contract. When
doing so, also change the the approveERC20() function to receive the router where the
token is approved.

Status
Implemented. New routers can be configured via the changeRouterAddresses() function.
The approveERC20() function was removed as part of the MI-02 resolution. Fix checked on
commit 42a8714a66542781d28a0563372c1051f363f4ea.

Page 10 of 17



Mintra Audit
September 2023

EN-03 FeeSplitter.flush() Improvements
Found on commit: 51f53e5a31b20ad6ae988a1b6a541441f87b828d
Location:

● contracts/feesplitter/FeeSplitter.sol

Currently the FeeSplitter.flush() function has some drawbacks that can be addressed.
Those are:

1. There is no incentive for a caller to pass a non-zero value in the
plsAmountToBuyAndBurnMintWith parameter. Passing 0 effectively makes the buy
and burn part of the process void.

2. The amounts parameter is not needed, as the slippage calculation is done anyway.
3. The burn() call in the processErc20s() function is not needed (see line 243), as

MINT transferred to the contract will be burned anyway in the buyBackAndBurn()
function also invoked by FeeSplitter.flush() (see line 384).

4. In the FeeSplitter.flush() documentation, the fact that the MINT tokens are not
used to generate funds for the rootAddress, the mintStakingAddress or the
msg.sender is not clear.

Recommendation
1. Calculate the amounts to exchange for each ERC20. This should not be more

expensive (in gas) than the current logic given that the slippage calculations are
done anyway.

2. Calculate the amounts used to buy MINT for burning. This should also not be more
expensive (in gas) than the current logic given that the slippage calculations are
done anyway.

3. Give some rewards using a small part of the funds used to buy and burn, to
incentivize that procedure.

4. Remove the unnecessary parameters (plsAmountToBuyAndBurnMintWith and
amounts).

5. Document how MINT funds transferred to the contract are used in the
FeeSplitter.flush() documentation.

6. Remove mint() call in line 243.

Status
Partially implemented. The burn() call in processErc20s() function was removed. The
documentation for the FeeSplitter.flush() function was updated. Changes checked on
commit 42a8714a66542781d28a0563372c1051f363f4ea.

Page 11 of 17



Mintra Audit
September 2023

Other Considerations
The considerations stated in this section are not right or wrong. We do not suggest any
action to fix them. But we consider that they may be of interest to other stakeholders of the
project, including users of the audited contracts, token holders or project investors.

Previous Audit
Older versions of the contracts audited here, along with other contracts of this project, were
audited by Coinfabrik in the June 2023 audit.

Only the difference with the last commit of the first audit was audited for the3

contracts/msi/MSIFactory.sol file.

The rest of the files included in this audit (contracts/feesplitter/FeeSplitter.sol,
contracts/marketplace/ERC1155Marketplace.sol,
contracts/marketplace/ERC721Marketplace.sol and
contracts/marketplace/Marketplace.sol) were audited in full.

Centralization
The Marketplace wizard role and the FeeSplitter vulcan role show some degree of
centralization, but there is a conscious effort made by the development team to keep their
power to a minimum. Please see the Privileged Roles section for details.

There are no admin-like roles in any of the audited contracts with the capabilities to
upgrade the deployed code, stop the contracts functionality or withdraw the contract funds.
This is a double edged sword. While as a user of the contracts we can be sure that the code
will not be changed by any malicious attacker or administrator, if a critical bug is found after
the deployment of any of the audited contracts there is no way an administrator can rescue
the funds or assets locked in the contracts nor stop users from using the contracts.

Upgrades
There are no mechanisms to upgrade the audited contracts.

Privileged Roles
These are the privileged roles that we identified on each of the audited contracts.

3 48188721057fd632c5b324a5521eb5e672f4136a

Page 12 of 17



Mintra Audit
September 2023

Marketplace

Wizard

The wizard can:
● Set the market fee percentage via the setMarketPercent() function. This value is

used when the transacting token is not the MINT token. The value can be set
between 0% and 3.69%. The initial value is 2.25%.

● Add a new ERC20 token to pay for items sold in the marketplace via the
addTokenAddress() function.

The account associated with this role is set in the contract's constructor (passed via the
_wizard parameter) and cannot be changed afterwards.

Collection Owner

A collection owner can set the royalty charged when sales are conducted through the
contract and what address receives those royalties if the collection does not implement the
ERC2981 by calling the createOrUpdateRoyality() function. The collection owner is
determined by calling the owner() function in the collection.

FeeSplitter

Vulcan

The vulcan can:

● change the maximum slippage via the changeSlippage() function. The slippage is
generated when tokens are burnt. The maximum tolerated slippage can be set
between 0.1% and 15%.

● allow the plsxRouterV1 and plsxRouterV2 contracts to operate on behalf of this
contract for an ERC20 address via the approveERC20() function. This functionality
was removed as part of the resolution of MI-02.

● configure the routers used to do the exchanges via the changeRouterAddresses().
This functionality was added following the EN-02 recommendation.

● configure the fees for each router via the changeRouterFees() function. This
functionality was added while this audit was made and checked on commit
ead5ca13fdc216f0b0613ecd782509faae0601cb.

The account associated with this role is set in the contract's constructor (passed via the
_vulcan parameter) and cannot be changed afterwards.

Page 13 of 17



Mintra Audit
September 2023

EOA

Only an EOA can execute the flush() function. This function implements the process used
to give out the funds accumulated in the contract. These funds are split in equal parts and
given to the mintStakingAddress, the rootAddress and the caller of the function.

Marketplace Items
An item represents an item to be sold in any of the marketplaces. In the
ERC721Marketplace contract is identified by the (contract address, token id) pair of the
underlying token. But in the ERC1155Marketplace the (contract address, token id, seller
address) triplet is used given that the same token may have multiple instances.

There are 3 types of items:

● Offer: It means that someone offered to buy a token not being sold in the store.
● Auction: The owner of the token sells it via an auction handled by the marketplace.
● Sale: The owner of the tokens sells it at a predetermined price.

Items can be put on sale or on auction on a single token at any given time. Offers for items
can only be made in PLS .4

It must be noted that an ERC1155 offer item is also identified by a seller address, so
ERC1155 offers are for a single seller.

This state diagram shows the possible item states, and applies to both the
ERC721Marketplace and the ERC1155Marketplace contracts. The edges are noted with
the names of the external or public functions used to change the item state.

4 PLS is the native token in the Pulse blockchain.

Page 14 of 17



Mintra Audit
September 2023

The bulk*() functions in the marketplace contracts just iterate on the single item actions,
so they are not included in this diagram for simplicity.

Marketplace Royalties
The Marketplace contract gives royalties when operations are performed on tokens.

If the token implements ERC2981, checked by probing the token's royaltyInfo() function,
then royalties are sent to the royalty receiver according to the declaration made by the
token contract.

If the token does not implement ERC2981, then the token needs to implement the owner()
function, and royalties are distributed according to the settings made via the
Marketplace.createOrUpdateRoyality() function.

If neither of those conditions is respected, then no royalties are distributed.

It must be noted that royalties can be increased and exceed the maximum royalty
percentage (stored in the Marketplace.maxRoyaltyBasisPoints variable) for
ERC2981-compliant tokens but not for other tokens, as the createOrUpdateRoyality()
function ensures that the royalty points are not increased on successive function
invocations.

For commit b7f13c1d8bb6b12e9fcf34090dc29248d597c5f5 a check was added to the
payout so the sale transaction will be reverted if the royalty is too high. See
contracts/marketplace/Marketplace.sol:312.

Page 15 of 17



Mintra Audit
September 2023

FeeSplitter Slippage Calculation
In the June 2023 audited code there was a price slippage calculation implemented in the
BuyAndBurn.calculateSlippage() function. This calculation directly measured the price
variation.

As part of the development work made after that audit, the FeeSplitter contract and the
BuyAndBurn contract were fused into the current FeeSplitter contract. So the slippage
calculation was moved to the FeeSplitter.calculateSlippage() function.

But this new function does not calculate the price slippage. Instead, it calculates the
reserve variation increase in the DEX.

Given that the development team informed us that they are going to be using the pulse
routers, deployed at 0x1715a3E4A142d8b698131108995174F37aEBA10D and
0x165C3410fC91EF562C50559f7d2289fEbed552d9 in the PulseChain production network,
and that those contracts follow the standard way for DEXes to calculate the exchanges by
keeping the the multiplication of the reserves constant, we know that constraining the
variation on the reserves of the in-token in an exchange will also limit the price variation,
but this price variation limit will be bigger than the reserves variation.

For example, if the in-reserve increases 15% the exchange rate will increase 32%5

approximately.

Changelog
● 2023-08-16 – Reported MI-01.
● 2023-08-22 – Reported ME-01, MI-02.
● 2023-08-25 – Checked fix for MI-01. Suggested EN-01. Reported mitigated issue

MI-03.
● 2023-08-31 – MI-02 was acknowledged by the development team. Checked fix for

ME-01. Checked implementation for EN-01. Reported mitigated issue MI-04.
● 2023-09-06 – Reported MI-05. Suggested EN-02, EN-03.
● 2023-09-07 – Checked fixes for MI-02, MI-05. Check implementations for EN-02,

EN-03.
● 2023-09-08 – Add Executive Summary, Scope, Methodology, and Other

Considerations sections.
● 2023-09-12 – Add to scope commit for non-security bug fix.
● 2023-09-13 – Add to scope commit for another non-security bug fix.
● 2023-09-18 – Add to scope commit for another non-security bug fix.
● 2023-10-19 – Add to scope commit for other non-security bug fixes. Document new

restriction on royalties.

5 This is the maximum possible in-reserve increase configurable.

Page 16 of 17



Mintra Audit
September 2023

Disclaimer: This audit report is not a security warranty, investment advice, or an
approval of the Mintra project since CoinFabrik has not reviewed its platform.
Moreover, it does not provide a smart contract code faultlessness guarantee.

Page 17 of 17


