
Short Code Review

04-May-2020

By CoinFabrik



Sorare - Short Code Review

May, 2020

Introduction 3
Summary 3

Our Findings 3

Scope of this Code Review 3

Analyses 4

Detailed findings 6
Severity Classification 6

Special Severity Classification Criteria 7

Critical severity 7

Sender’s Replay Attack 7

Receiver/Sender ownership verification logic issue 8

Invalid signature verification for token transfer 9

Relay contract replay attack 11

Medium severity 12

Jeopardized ETH amount validation by uint overflow 12

Minor severity 13

Enhancements 13

Conclusion 14

Page 2 of 14



Sorare - Short Code Review

May, 2020

Introduction
CoinFabrik was asked to conduct a short code review of the smart contracts written
for the Sorare project. Due to the haste, many deep analyses that are usually part of
a formal audit process had been ruled out. On the other hand, some of the findings
we describe below could be false positives since they have not been tested in a
simulated environment. They are included in this report and should be understood
as red flags to be confirmed. First we will provide a summary of our findings and
then we will show more details.

Summary
The contracts reviewed are from the Sorare repository at GitLab:
https://gitlab.com/sorare/blockchain/-/tree/master/src/contracts.

This review is based on the commit a76b43282e630dcc56198fd37ca453756c4b818d, and
updated to reflect changes at bac72c11e985893c64af9e677eab54d225ebdbcf.

Our Findings
1. Sender’s Replay Attack (Critical)
2. Receiver/Sender ownership verification logic issue (Critical)
3. Invalid signature verification for token transfer (Critical)
4. Relay contract replay attack(Critical)
5. Jeopardized ETH amount validation by uint overflow (Medium)

Scope of this Code Review
The the following contracts were reviewed:

1. Bank.sol

2. BatchMinter.sol

3. CapperAccess.sol

4. CashDesk.sol

5. Closable.sol

6. IBank.sol

7. INextContract.sol

8. ISignerAccess.sol

9. ISorareCards.sol

10. ISorareData.sol

Page 3 of 14

https://gitlab.com/sorare/blockchain/-/tree/master/src/contracts


Sorare - Short Code Review

May, 2020

11. ISorareTokens.sol

12. Migrations.sol

13. MinterAccess.sol

14. NFTClient.sol

15. Relay.sol

16. RelayRecipient.sol

17. Signature.sol

18. SignerAccess.sol

19. SorareCards.sol

20. SorareData.sol

21. SorareMetaProxy.sol

22. SorareTokens.sol

23. Taxable.sol

24. mocks/ERC721Holder.sol

25. mocks/ERC721MintableBurna
bleImpl.sol

26. mocks/ExposedTaxable.sol

27. mocks/NextContract.sol

28. mocks/SignerAccessWithBank
Approved.sol

Analyses
The following analyses were performed:

● Misuse of the different call methods: call.value(), send() and transfer().

● Integer rounding errors, overflow, underflow and related usage of SafeMath
functions.

● Old compiler version pragmas.

● Race conditions such as reentrancy attacks or front running.

● Misuse of block timestamps, assuming anything other than them being
strictly increasing.

● Contract softlocking attacks (DoS).

● Potential gas cost of functions being over the gas limit.

● Missing function qualifiers and their misuse.

Page 4 of 14



Sorare - Short Code Review

May, 2020

● Fallback functions with a higher gas cost than the one that a transfer or send
call allows.

● Fraudulent or erroneous code.

● Code and contract interaction complexity.

● Wrong or missing error handling.

● Overuse of transfers in a single transaction instead of using withdrawal
patterns.

● Insufficient analysis of the function input requirements.

Page 5 of 14



Sorare - Short Code Review

May, 2020

Detailed findings

Severity Classification
The security risk findings are evaluated according to the following classification:

● Critical: These are issues that compromise the system seriously. We suggest

fixing them immediately.

● Medium: These are potentially exploitable issues. Even though we did not

manage to exploit them or their impact is not clear, they might represent a

security risk in the near future. We suggest fixing them as soon as possible.

● Minor: These issues represent problems that are relatively small or difficult

to exploit but can be used in combination with other issues. These kinds of

issues do not block deployments in production environments. They should be

taken into account and be fixed when possible.

● Enhancement: These kinds of findings do not represent a security risk. They

are best practices that we suggest to implement.

This classification is summarized in the following table:

Severity Exploitable Production
roadblock

We suggest
fixing it

Critical Yes Yes Immediately

Medium Potentially Yes As soon as
possible

Minor Unlikely No When possible

Enhancement No No Optionally

Page 6 of 14



Sorare - Short Code Review

May, 2020

Special Severity Classification Criteria
All findings are potential and no certain or tested results are available.

Fund losses are mitigated because ultimately the withdrawal of ETH is handled in
the cashdesk, under centralized approval, and token fraud can be returned using
RelayAddreess account on the stealer behalf.

However, the severity criteria was determined according to the trust in the logic of
deal validation and user’s authentication signature verification.

Critical severity

Sender’s Replay Attack

Assumption: we understand that a sender can sign an "open receiver deal" and a
receiver can take that deal, sign it, and execute it.

If our assumption in the signing process is correct, then a malicious sender can
listen to the transaccion mempool for that DEALID settle execution, to move just
enough funds or assets, the moment before, paying higher gas price, to make the
deal unable to be settled.

The whole purpose is to capture the signed deal from the failed transaction sent by
the receiver and, having the captured message, the attacker could replay the
settlement at a future moment for example when the token is devalued, due to
decreased scarcity, getting more eth for what is the token now worth. Forcing the
receiver to pay the price that signed for a, now devalued, token.

This problem relies on the inability of the receiver to cancel a deal unlike the sender,
who can cancel a deal at any time using the function cancelDeal:

function cancelDeal(uint256 _dealId) external {
deals[msg.sender][_dealId] = true;

Page 7 of 14



Sorare - Short Code Review

May, 2020

emit BankDealCancelled(_dealId, msg.sender);
}

Given that the sender and the receiver are both essentially the same users (since
they can both send and receive tokens and ETHs), both should be able to cancel a
signed deal.

Solution:

Add an additional require in the settle function such as:

require(

!deals[_deal.receiver][_deal.dealId],

"Deal settled or cancelled"

);

Now the receiver can use the function mentioned above, the same as the sender.

Receiver/Sender ownership verification logic issue
This attack relies on the logic that verifies that the receiver/sender owns the token
they are trying to trade.

Several attacks can be derived from this flaw but we will describe only one, which
consist in offering certain token in the deal and accomplishing a successful settle
when the token was not actually sent.

Here is the logic that checks the receiver owns the token (similar logic applies to
sender).

internalTokensIndex = 0;

mappedTokensIndex = 0;

for (uint256 i = 0; i < _deal.receiveTokenIds.length; i++) {

uint256 token = _deal.receiveTokenIds[i];

address owner = nonFungibleContract.ownerOf(token);

if (owner == receiveInternalTokens.from) {

Page 8 of 14



Sorare - Short Code Review

May, 2020

receiveInternalTokens.tokenIds[internalTokensIndex++] = token;

} else {

receiveMappedTokens.tokenIds[mappedTokensIndex++] = token;

}

}

require(

internalTokensIndex + mappedTokensIndex ==

_deal.receiveTokenIds.length,

"Receiver doesn't own all tokens"

);

Here the _deal.receiveTokenIds.length will always be internalTokensIndex +
mappedTokensIndex as they are incremented either one or the other on each
iteration for being in an ‘if/else’ clause.

Therefore, it makes the verification invalid for every case. This is not such a big
problem because the actual token ownership verification is made ultimately in the
transferFrom function of the token itself and, if it is not the actual owner, the whole
transaction would be reverted.

Solution:

Have two separate ‘if’ clauses, one for each verification, instead of the current
‘else/if’ clause. A possible code could look like this:

if (owner == receiveInternalTokens.from) {

receiveInternalTokens.tokenIds[internalTokensIndex++] = token;

}

if (owner == receiveMappedTokens.from){

receiveMappedTokens.tokenIds[mappedTokensIndex++] = token;

}

Invalid signature verification for token transfer
Note: the code here reflects the changes made to Fix settling a Deal with no tokens.

Here the vulnerability is in the condition that && (tt.tokenIds[0] != 0)

Page 9 of 14



Sorare - Short Code Review

May, 2020

If that condition is false then none of the tokens are transfered.

for (uint256 tti = 0; tti < _tokenTransfers.length; tti++) {

TokenTransfer memory tt = _tokenTransfers[tti];

if (tt.tokenIds.length > 0 && tt.tokenIds[0] != 0) {

Signature.requireSignature(

abi.encode(tt.sigType, dealBlob),

tt.signature,

tt.from

);

address tokenRecipient = tt.to;

if (useMappedAccountAsDefault[tt.to]) {

tokenRecipient = mappings[tt.to];

}

nonFungibleContract.transferTokens(

tt.from,

tokenRecipient,

tt.tokenIds

);

}

}

A sender could offer a deal where the token tokenId=0 is the first token, followed
by his other tokens. Then a bidder would sign the deal expecting to receive the
offered tokens and naively ignoring the first tokenIds[0] = 0 and settle it. But none
of the tokens offered by the sender would be transferred to the receiver. The sender
would keep all his tokens and also get receiver’s funds and tokens, for free.

Solution:

Remove the condition (tt.tokenIds[0] != 0) from the ‘if’ clause, leaving just:

if (tt.tokenIds.length > 0 ) {

Page 10 of 14



Sorare - Short Code Review

May, 2020

Relay contract replay attack
Relay.sol

By using a middleware contract we can call the function purgeBatchNonces
multiple times in the same transaction resulting in the eventual reset of the variable
_batchNonces[sender] allowing us to reuse a signed transaction for a previous
nonce. How many times this function needs to be called by the attacker’s contract
depends on the value of _batchSize and subsequently, the gas cost to execute the
attack which, for a relatively small _batchSize, the attack could be too expensive.
However, it should be considered that delete _burnedBatchNonces[sender] may
return some of the gas cost to the attacker contract caller. And that the transaction
to replay may be, for example, a very valuable token transfer making the attack
much more cost effective. BUT even so, the transaction gaslimit may result in a
ridiculous amount of transactions needed to accomplish the attack and the time it
would require being too high.

function purgeBatchNonces(address sender) public onlySigner {

delete _burnedBatchNonces[sender];

_batchNonces[sender] = _batchNonces[sender] + _batchSize;

}

A variant of this attack consists of a denial of service of the RelayBatchCall function
by calling the purgeBatchNonces in the middle of its execution preventing it from
finishing.

Solution:

This function should require a signature from the sender allowed to purge the batch
nonces. A possible resulting code could have the following shape:

function purgeBatchNonces(

address sender,

uint256 batchNonce,

Page 11 of 14



Sorare - Short Code Review

May, 2020

bytes memory signature) public onlySigner {

require(batchNonce=_batchNonces[sender],"Invalid Nonce")

bytes memory message = abi.encode(

batchNonce,

address(this)

);

Signature.requireSignature(message, signature, sender);

delete _burnedBatchNonces[sender];

_batchNonces[sender] = _batchNonces[sender] + _batchSize;

}

Medium severity

Jeopardized ETH amount validation by uint overflow

function depositETH(
address[] calldata _addresses,
uint256[] calldata _amountsInWei

) external payable {
require(

(_addresses.length == _amountsInWei.length),
"Incorrect arguments"

);
uint256 requiredAmount = 0;
for (uint256 i; i < _amountsInWei.length; i++) {

requiredAmount += _amountsInWei[i];
}
require(msg.value == requiredAmount, "Value sent does not match");

for (uint256 i; i < _addresses.length; i++) {
sorareBankContract.depositETH.value(_amountsInWei[i])(

_addresses[i],
"",
false

);
}

}

Page 12 of 14



Sorare - Short Code Review

May, 2020

The depositETH function uses a ‘for’ statement to add all amountInWei from the
integer array used as parameter in the requiredAmount variable and then compares
this value withmsg.value using a ‘require’ as validation. The problem is that the
operation is not done using SafeMath library allowing sending different possible
combination of integer values in the amountInWei array that adding them to the
requiredAmount variable one after the other in each iteration will make the variable
overflow consequently causing the validation (in the ‘require’) to fail since it will be
equal tomsg.value but it will not represent the real total of the sum of
amountInWei.

To accomplish this attack, a specific combination of values, in both arrays, should be
used as parameters. Even though the impact of this vulnerability was not analyzed,
the fact that the total ETH validation can get jeopardized and then used to interact
with the bank, exposes a big risk that might be combined with other bugs or
escalated to a more complex attack.

Solution:

Apply SafeMath library instead of the += operation.

requiredAmount = requiredAmount.add(_amountsInWei[i]);

Minor severity
Not found yet.

Enhancements
Not found yet.

Page 13 of 14



Sorare - Short Code Review

May, 2020

Conclusion
Given the short time we had to examine the code, it is not defined yet but in general
terms, we can say it is a great project with big potential and very good code quality.

Once fixed the identified issues, we think it is safe to launch. However we suggest
requesting a full audit of the code looking for any door that might remain open after
the changes, and any bug that might have remained unseen in this review.

Disclaimer: This report is not a formal security audit. It is a high level code
review, which purpose is to help the development team, management and
sponsors to gain visibility on the project. A formal audit process must be
performed in order to launch the application safely. This code review is not a
security warranty, investment advice, or an approval of the Sorare project since
CoinFabrik has not reviewed its platform. Moreover, it does not provide a smart
contract code faultlessness guarantee.

Page 14 of 14


