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PRELIMINARY

1 Abstract

We present an efficient divisible e-cash scheme based on strong cryptographic assumptions. This
scheme can be implemented on a peer-to-peer network without the requirement of a Trusted Third
Party. Also, the scheme can be implemented on a network with a known set of central nodes that
require minimal trust from the users. The scheme can be implemented on a variety of cryptographic
ciphers, over Zp and Elliptic curves, and other fields where the Diffie-Hellman problem is known to
be hard. Instead of using monetary units of fixed value (“coins”), our scheme relies on electronic
bills of arbitrary value. Each bill can be subdivided into bills of smaller amounts at will without
disclosing the bill amount, and also bills can be added creating new bills of greater amounts.  The
size of each bill is proportional to the size of an element of the field in use (Zp, or a point in an EC).
The computational and communication complexity of the protocol is proportional to the size of the
bill and the number of transactions per second the system processes.

Keywords: digital cash, divisibility, unlinkability, annonymity, peer-to-peer.
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1 Introduction

In  this  paper  we  present  AppeCoin,  a  practical  and  efficient  e-Cash  scheme  based  on  strong
cryptographic assumptions. AppeCoin has several outstanding properties:

• Efficient
• Security based on strong cryptography
• Truly Anonymous: Untraceable and unlinkable bills, private account balances, private 

transaction amounts.

A peer-to-peer  currency system is  a  distributed  system where computers  (called peers)  share  a
portion of  their  resources  in  order  to verify transactions  and issue payments,  without  a central
authority and any Trusted Third Party (TTP). Some peer-to-peer currencies, such as Bitcoin and
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derived coins are not inherently TTP-free, but they behave as TTP-free as long as the majority of
the network computing power is honest. In Bitcoin transactions are accepted when they are included
in a proof-of-work block chain. AppeCoin requires that the network decides a unique ordering of
transactions,  so  it  can  be  implemented  using  a  proof-of-work  block  chain  as  in  Bitcoin,  by
consensus or by the trust in a central node.

In AppeCoin money is represented by encrypted bills of different amounts. The amount of money
contained by an encrypted bill is only known to the bill owner. The bill owner has a secrets keys
that allow him to open the encrypted bill, combine it, subdivide it, or transfer it to another user.
AppeCoin bills behave as banknotes but have an embedded public key that belongs to the bill's
owner. Even each bill has a “serial number”, this number is hidden as the bill is transferred. In the
proposed implementation, each bill consists of 6 fields, but there also an alternate implementation
will  only 4  fields.  Nevertheless  using  4  fields  requires  that  a  complex  proof  of  knowledge to
transfer the bill, while using 6 fields a bill is transferred with a single digital signature.
We define a payment as a transaction where a certain amount of money is transferred from a user to
another user.

How AppeCoin achieve anonymization

AppeCoin money is contained in bills. These bills are accepted by the network as long as they are
active or minted. Active bills are stored in a database which generally is either replicated among
peers or peers have access to it. Each bill has a temporally unique id to allow referencing active
bills. Bills  are anonymized by shuffles. A shuffle is an operation where a set  of bills  is mixed
together and re-encrypted such that, given the input and the final output, it’s infeasible for any party
to recover any information regarding the applied permutation nor any information regarding the
encryption key used, with any meaningful advantage better than random guessing, except for the
mixer  and  the  owners  of  the  bills  mixed.  The  shuffler  knows  both  the  permutation  and  the
encryption key and each bill owner knows the destination position in the output of his own bill, but
not the key, neither the positions of the unowned bills. There are three types of mixes, private,
delegated and public. Public mixes periodically and automatically mix the bills of random owners.
In private mixes a single owner mixes some of his own bills with a set of bills randomly taken from
the database of active bills. In delegated mixes, a third party is in charge of collecting a set of bills
specified by different owners and mix them together, possibly also adding a random set of bills in
the database of active bill. In all cases the mixer knows the permutation, and each bill owner is only
able to detect what one of his bills has been mixed and which is the identification of a new bill that
replaces  the  mixed bill  (this  is  equivalent  to  detect  bill  position  in  the  list  of  permuted  bills).
Because  a  mixer  can  shuffle  bills  he  doesn't  own,  an  re-encryption  system that  preserves  the
possibility that the bill owner proves ownership of the bill and decrypts it. A cryptosystem with this
property is said to allow Universal Re-encryption.  Each bill is associated with a public key (and
therefore also with a private key). To transfer a bill, the previous association with its current public
key is broken and a new association is made. This bill public key can be interpreted as a destination
address. Therefore the universal re-encryption cryptosystem must have the additional property that
the public key associated with the message is maintained intact after re-encryption.

Privacy issues

Suppose that each bill represents a fixed monetary amount. The first problem one can find in a
cryptocurrency scheme is that if the public key is used multiple times associated to different bills,
information regarding the number of payments made, or even the amounts transferred to that public
key (a destination address) is leaked. To maximize anonymity, each bill should be sent to a different
unique address specified by the receiver or computed by the sender in relation to a fixed destination
address.  But  still  there  is  a  second  problem:  if  each  bill  holds  a  fixed  amount  of  money,  a
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transaction  may require  the  combination  of  several  bills  to  cover  a  desired  amount.  To pay in
specific amounts, most payment schemes, like Bitcoin, implement transactions that specify a set of
input “bills” and a set of output destinations. But this method also leaks information,  since the
grouping of “bills” may suggest a single receiver and the number of input bills contained in the
transaction may correlate with the amount of money transferred. We conclude that each bill should
go to a different address of the payee in a different transaction. But this modified method leaks
information too. Since these related transactions are probably created in a certain short period of
time and by the same node of the network, other nodes connected to this peer may be able to infer
that these transactions are part of a single payment. Also, sending each bill in a different transaction
may result in increased fees. It’s clear that to achieve truly anonymization, each payment should be
contained  in  a  single  transaction  whose  size,  or  any  other  detectable  transaction  field,  is  not
correlated with the payment amount.
Even if a system like the one described could provide some anonymity, it has two other problems:
continuous fragmentation and difficulty to pay an amount lower than the value of a bill. The last
problem arises for the impossibility to specify anonymously the amount of “change” in a transaction
or to anonymously get “change” from another peer such that a transaction can specify and exact
amount of bills.

A full solution: AppeCoin, private divisibility and combinability

Bills are periodically anonymized by shuffles. To maximize anonymity, a standard payment should
consists of a single bill, and this bill amount should match the exact amount of the payment. The
transaction that contains the payment also specifies the fees as a single bill of the exact amount to
be paid. To solve the problem of continuous fragmentation and specifying change, in AppeCoin
bills can be anonymously divided and combined. Divisibility is required to solve the problem of
change, and combinability is required to reduce fragmentation. Divisibility and combinability can
be implemented for an arbitrary number of bills. Nevertheless, in this paper we'll explain how to
combine two bills into one or divide a bill in two for clarity.  It's also possible to define protocols
similar to the shown in this paper to transform any input set of bill into an output set of bills, thus
removing the distinction between combination and division. Nevertheless, we'll restrict to the 1:n
and n:1 case for clarity.

To build a standard payment the payor must first create a bill for the transaction fees (if any) and
then a bill for the payment itself. To create each of this bills, the following steps must be followed:

– If the bill amount is higher than any owned bill amount, combine a set of bills into a single
bill  of  an  amount  higher  or  equal  the  amount  to  be  paid.  This  requires  a  combination
transaction.

– If there is no bill with the exact amount to be paid, divide a bill into two bills, where one of
them  has  exactly  the  amount  to  be  paid.  This  requires  a  division  transaction.  The
combination and division transactions can be grouped in a single transaction without loss of
anonymity.

After both the payment bill and the fee bill are ready, the following steps should be carried:
– Wait  some time until  a  periodic public  shuffle mixes the newly created bills  or build a

private shuffle transaction or ask for a delegated shuffle.
– Construct the payment transaction using the shuffled bills.

Public Mixing Service (PMS)

The public mixing service is a shuffling service provided by the system “free of charge”. The idea
behind providing such service is to establish a base anonymity layer so users cannot be target of
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discrimination by governments because of using or not anonymization features. If the system is
implemented in a peer-to-peer network using a block-chain (such as Bitcoin) then the public mixing
service should be provided by the miners.  Obviously, a miner may store the information regarding
the  applied  permutation,  and  provide  that  information  to  whatever  government  department,
competitor or underground party he wishes. Nevertheless, as long as there are “fair” miner with
enough mining power the system will provide free anonymization of all bills sooner or later.
There are several options to choose which bills should be shuffled together. One method will be
referred as Fast-start. With Fast-start, all the bills created in the current block are always shuffled.
Also a percentage of the bills that were the output of the previous block public shuffle (or the output
of any shuffle that was performed in the previous block) is also re-shuffled. It's best that the bills
that are taken from the previous shuffles outputs be pseudo-randomly chosen in a way that is hard
for the miner to force a certain outcome. For example, the pseudo-random order can be dictated by
taking as seed the block header hash digests of the ten previous blocks.

A simple fast-start strategy can be defined by three values p;c;d. Where p is the maximum number
of bills to be taken from the previous block, c is the maximum number of bills to be taken from the
current block and d is the maximum number of bills to be taken from the active bills database.
For example, 100;1000;100 is a strategy to take at most 100 bills from the previous block, at most
1000 bills from the current block and at most 100 bills from the database.
Also, the strategy specification can be given in percentages, where P means the total number of bills
in the previous block, C is the total number of bills in the current block and D is the total number of
bills in the database.
The strategy 50P;100C;50C means that 50% of the previous bills are remixed with 100% of the
current bills and half the number of bills in the current block taken from the database.
Other more elaborated strategies can be analyzed such as x=50P;y=100C;max(10,1000-x-y) which
means that the number of bills to be taken from the database is chosen so the total number of mixed
bills is limited but still always some database bills are mixed.

Other important aspect to analyze is whether the bills  to be mixed in a block should be easily
predicted or not. One method allows owners to predict when their bills in the database will be
chosen to be part of a public shuffle is by making the pseudo-random selection function depend
solely on the block height. If the percentage of bills taken from the database in each public shuffle
is low, this allows client applications to reduce the workload of checking every mixed bill against
their public keys (which should not be more than one, as opposed to Bitcoin privacy standards).
Nevertheless, there is still the possibility that a delegated or private shuffle mixes one of the owned
bills at random. It's possible to force private and delegated shuffles to only mix public bills that
belong to the same set of bills that will be public shuffled. To implement this, for each private bill
that undergoes a private/delegated shuffle a signature of the bill id and the block height, using the
bill public key, must be provided in the shuffling transaction.

If which bills are shuffled cannot be predicted, then the client application should decide, based on
the usage pattern of the owned bills, if it's better for it to look for each owed bill after each shuffle
or delay this verification. To explain a good delayed checking strategy, we'll say that a bill id is
“active” if it's on the current active bill database, “inactive” if it was in the database but was re-
encrypted,  so  there  is  still  a  bill  in  the  active  database  associated  with  the  inactive  bill,  and
“destroyed” if the bill was destroyed because of a division or a payment. The client application may
delay any search for changed ids until a payment is required to be performed. If there is not enough
money in the active bill ids, then a search is performed starting from the last unsearched block,
replacing inactive bills by their active counterparts until the required amount in active bills has been
reached.

Delegated Mixing Service (DMS)
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A delegated mixing service is a service provided by a third party that collects  bills from other
interested parties,  adds  some active bills  from the database and mix them together.  Users  may
choose delegated mixing services for several reasons:

1. They may trust the service owner more than any anonymous miner
2. They may want anonymization to occur faster than the public shuffling service may provide.

It must be noted that the DMS owner does not have any power to either steal nor forbid use of the 
bills it shuffles.
Since the transaction that contains the mixed bills may need to pay fees, the DMS will probably
charge users willing to mix their bills. The payment can be achieved by a micro-payment method or
by transferring bills as payment.

It must be noted that if both a shuffle and a bill transfer of the same bill occur in the same block, the
transfer should be executed first, to prevent a denial of service attack by re-mixing a not owned bill.
Nevertheless this also means that the network must be able to prioritize transactions queued to be
included in block. Bill transfers must have higher priority than bill mixes.

Private Mixing (PRM)

Private mixing is a transaction that involves mixing a set of bills owned by the same person. From
the perspective of the system, there is no different between a delegated mixing or a private mixing,
and both transaction looks alike. Nevertheless, a user my desire to be his own mixer to has the
highest possible anonymity.

Pairwise Mixing (PAM)

As with the Bitcoin CoinJoin protocol, one can implement pairwise mixing and leverage the cost of
the mixing transaction.  If  two peers decide they are willing to mix bills  together,  they build a
transaction consisting on the bills to be mixed, where each input bill is signed by the corresponding
parties, and two fee bills are included (one send by each party).

The performance of Mixing

One of the most important aspects of mixing cryptocurrencies is mixing requires all nodes to verify
the correctness of the mix. This is done with zero-knowledge proofs. Verification performance is
therefore is out utmost importance. In this paper we present two mixing (shuffling) protocols. The
verification  time  is  generally  measured  in  the  number  of  slow  operations  performed,  usually
modular exponentiations over a field of high order. The first is a standard cut-and-choose protocol,
provided for simplicity and performance comparison. The second is a protocol whose number of
modular exponentiations does not depend on the number of elements mixed, which is what makes
mixing in AppeCoin practical

2 Requirements

We now briefly describe the conditions that we think an unlinkable divisible digital cash scheme
should satisfy. The list (based on [16] and [x]) is as follows:

Regarding to Security
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No  double-spending.  All  double-spending  attempts  will  be  detected  and  only  one  of  the
transactions will take place. The remaining transactions will be discarded.

No over-spending. No user can spend more than his bills monetary value nor any user can create a
valid bill from thin air.

Unforgeability. Neither a bill nor a transcript of a payment of an honest user can be forged.

Portability. The security and use of digital cash is not dependent on any physical location.

Authenticity. A bill can be proved to be authentic, without the need to spend it.

Non-repudiation. No user can repudiate having spent a bill.

Regarding to Privacy

Anonymity.  The payer  that  conforms to the protocol  cannot  be identified from the exchanged
information during payment.

Unlinkability. It’s infeasible to link any two payments executed by the same user (even without
learning the payer’s identity).

Untraceability.  It  should  be  possible  to  hide  the  past  transactions  of  a  bill  or  the  number  of
transactions that the bill underwent.

Hidden amounts.  It should be possible to hide the amounts of a transaction to prevent loss of
privacy because of correlated amounts.

Regarding to Utility

Transferability.  Bills  can  be  transferred  between  the  users  without  intervention  of  a  central
authority.

Divisibility. A user can subdivide a bill into bills of smaller amounts that add up to the original bill
without disclosing the amounts processed.

Composability. A user can create a new bill by adding other bills without disclosing the amounts
processed

3. General Definitions

Def: An HCGC (Homomorphic Commutative Group Cipher) is a tuple (E,D,K,M,*) that satisfies:
• M the message space (both plaintext and ciphertexts space are equal)
• K is the key space.
• K is a field.
• E is the encryption function of a symmetric cipher
• D be the decryption function of a symmetric cipher
• For all m in M and k1,k2 in K, E(k1*k2,m ) = E(k1,E(k2,m))
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• For all m in M and k in K, D(k,E(k,m))=m
• For all m in M and k in K, D(k,m) = E(k-1,m)
• E and D share an homomorphic operator ¨*¨ such that for any a,b in M and k in K , E(k,a*b) 

= E(k,a) * E(k,b).
• E and D share an homomorphic operator ¨*¨ such that for any a in M and k1,k2 in K , 

E(k1+k2,a) = E(k1,a) * E(k2,a).
• The operations “-” and “+” are on K are the ones defined for field.
• E has no weak or invalid plaintexts except a small set with negligible probability of random 

occurrence that can be easily detected.  Because of this, almost every element m in M is a 
generator of any other element of M by the encryption function E, thus we can safely 
assume all elements are generators.

• E has no weak or invalid keys except a small set with negligible probability of random 
occurrence that can be easily detected.

Notation
• “*” stands for multiplication on the field K or the homomorphic operator of E, depending on

the context it is used.

The HGCC is chosen so that the probability that E(k,a)=1 for a random a in M and k in K, where 1
is the multiplicative identity is negligible. The same applies for the identity key. Nevertheless, we'll
check that no procedure computes unexpectedly the identity and if computed, the running procedure
will be aborted.

Def: The Discrete Log Problem (DLP)

Let a,b be elements of M. The Discrete Log Problem is to find k in K such that a = E(k,b).

Solving the DL problem for any pair of elements is equivalent to being able to perform a known-
plaintext-attack (KPA) on the cipher.
If the DLP is hard, we can say that two specific elements a,b are independent if is computationally
infeasible for any user to find k in K such that a = E(k,b).

Def: The Representation Problem (RP)

Let x1,..,xn and a be elements of M. The representation problem (RP) is to find k1,..,kn such that a = 
E(k1,p1) * … * E(kn,pn).

Def: The Diffie-Hellman Problem (DHP)

Let a be an element of M. The Diffie-Hellman problem (DHP) is to find E(k1*k2,a) given E(k1,a) and
E(k2,a). Since E(k1*k2,a) = E(k1,E(k2,a)) solving the DH problem for any elements  a,  k1 and  k2  is
equivalent to perform a malleability attack on the cipher.

For Appecoin we need a cipher HCGC such that the DLP, DH and RP problems are hard. Also, we'll
require  some  standard  assumptions  about  the  cipher:  resistance  against  Ciphertext-only  attack
(COA) and Chosen-plaintext attack (CPA). All our computations will be based on an HCGC, and
there are various examples of ready to use HGCCs:

• Pohlig-Hellman symmetric cipher on a Schnorr group (the subgroup of  kth residues modulo a
prime p, where (p − 1) / k is also a large prime)
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• Massey-Omura cryptosystem
• Pohlig-Hellman symmetric cipher on elliptic curves
• Pohlig-Hellman symmetric cipher analog on any other field
• The LUC cryptosystem

So simplify the forthcoming descriptions, instead of using the abstract notation E(k,x) we'll use the
exponential notation commonly used for the Zp field, so that E(k,m) will be noted mk (omitting mod
p). This notation is helpful since is widely used in cryptography.

Abstract definition of Schnorr Signatures with Universal re-encryption

Def: A  Schnorr signature scheme  over  a  given  HCGC is  defined  by these  algorithms.  This
definition of Schnorr signatures differs from the standard definition in the fact that there is no public
generator, the generator is variable and is part of the public key to allow universal re-encryption f
public keys. Also H is a cryptographic hash function.

Key Generation
– Choose a random x in K.
– Choose a generator g in M.
– Compute y = gx

– (y,g) is the public key, x is the private key.

Signing: to  sign the message u
– Choose a random k in K
– Let r = gk

– Let e = H(u || r )
– Let s = ( k – x*e)
– (s,e) is the signature

Verifying:
– Let rv = gs*ye

– Let ev = H(u || rv)
– If e = ev then the signature is authentic.

Universal Re-Encryption of a Public Key
– Let (y,g) be a public key
– Choose a random k in K.
– (yk,gk) is the new public key for the same private key.

Proof:
rv = gs*ye = rv = g( k – x*e)*gx*e=  E( k – x*e,g) * E(x*e,g) = E ( k – x*e + x*e, g) = gk = r
and so ev = H(u || rv) = ev = H(u || r) = e

The  universal  re-encryption  property  requires  that  the  HCGC  withstands  Ciphertext
indistinguishability under  Chosen-plantext  attack,  which  is  provided  by  the  Diffie-Hellman
hardness assumption.
In this paper, we've chosen Schnorr signatures over ElGamal or DSA (EC-Schnorr vs. ECDSA)
signatures, since verifying Schnorr signatures is faster, and there are some results that prove that
key-pairs used in Schnorr signatures can be reused for Diffie-Hellman public key encryption of a
session key, such as in DLIES/ECIES, without degrading the overall security [128]. Nevertheless,
it's  possible  to  use  DSA-like/ElGamal/ECDSA signatures  over  Schnorr  and  the  properties  of
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AppeCoin are not affected. If adverse interaction between signing and encryption keys is suspected,
then AppeCoin public keys can be constructed by concatenation of a signing-specific public key and
an encryption-specific public key.

3.1 Bills

An AppeCoin bill a is a tuple (as1 , as2 , at , au , av , aw ) that consists of six fields:

1. as1  and as2  represent a destination address, and hides the private value s
2. av  represents the bill value, and hides the private value v
3. at  represents the first DH masking of the bills value, and hides the private value t
4. au represents the unit of value, and hides the private value u
5. aw  represents the second DH masking of the bills value, and hides the private value w

The system is defined by the HCGC and three generators of the message space g, a and b, where g,
a and b are pairwise independent.

The destination is represented is by the tuple (as1 , as2 ) = (g', g's), where s is a private key known only
to the last receiver of the bill that represents the destination address and g' is a random generator of
the message space, chosen by the last sender of the bill.
The bill value v is encoded in a the “exponent” (the encryption key of the HCGC) of a generator,
masked by two other exponent values: av = au  twv,, where at = au  t and aw = au  w, and t,v,w are secret
values. This masking which result in the encryption of the value v, such as finding v is equivalent to
breaking Diffie-Hellman in the HCGC. The unit of value (u) is a field that is used to track the
changes  on the  av  field  when the  bill  is  encrypted:  it's  a  witness  of  all  encryptions  that  a  bill
undergoes. The bill value is the monetary amount transferred and this value is blinded by a Diffie-
Hellman exponent.
The owner of a bill must keep track of the secret tuple (s,t,u,v,w) for each bill. All secret values
correspond exactly to the discrete logarithms of the corresponding terms to the base au. When the
bill is created, then  au = d. After the bill undergoes encryptions, this will not normally hold.

Now we'll define procedures that operate on bills:

• r :K ← GenRandKey() is a random/pseudorandom key generation function.

• r : M ← GenRandMsg() is a random/pseudorandom message generation function.

• P :  Permutation ←  GenRandPerm() is  a  random/pseudorandom permutation generation
function from the non-negative integers to the non-negative integers.

• b : Bill ←  TransferBill(d :K, a : Bill)  is a Bill that has been transferred to the destination
address d.

• b : Bill ←  EncryptBill(k :K, a : Bill)  is a Bill encryption function with the key k.

• U*: List<Bill> ← ShuffleBills(C*  : List<Bill>, k : K, P :Permutation ) is a shuffle function
and re-encryption with key k that transforms the bills c1, … , cn into the bills u1, …, un, where
U* = (u1, …, un) and C* = (c1, … , cn), using the permutation P.
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• p : SProof ← GetBillShuffleProof(A*,B* : List<Bill>, k : K) is a function that returns a 
practical non-interactive zero-knowledge proof that the Shuffle operation has been done 
correctly.  There are two versions of this function, one uses the classical cut-and-choose 
method and the other uses a new method in which the number of modular exponentiations 
does not depend on the number of elements shuffled.

• b :Boolean ←  VerifyBillShuffleProof(A*,B* : List<Bill>,  p : SProof  ) is a function that
verifies a zero-knowledge proof p and returns true if it is correct, and false otherwise.

•  (s,e) : M←  Sign(s : K,  s1,s2 : M,  u :Message) is function that returns a signature of the
message u using the public key (s1,s2) and the private key s of URe-Schnorr signatures.

• b: Boolean ← VerifySig( s,e: M, s1,s2 : M , u :Message) is the verification function for the
Ure-Schnorr signature (s,e), for the public key (s1,s2)  and the message u.

Notation: (a,b) : M means that both a and b are fields of type M.

• (y,g) : M , x : K ← GenPubPrivKey() is a function that generates a new public and private 
key-pair: y and g are public, and x is private.

•  (y',g') : M ← UrePubKey( y,g : M) is a function that returns a re-encryption of the public
address (y,g) with a new random key.

 

GenRandKey

Output:

k : K

1. Choose a random k in K.

2. Output k.

Figure 1

GenRandMsg

Output:

m : M

1. Choose a random generator m in M.

6. Output m.

Figure 2

TransferBill

Input:  

d :K

a : Bill

Output:

b : Bill
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1. Let a = (as1 , as2 , at , au , av, aw)

2. Let b = (bs1 , bs2 , bt , bu , bv, bw)

3. Let m := GetRandMsg()

4. bs2  :=m

5. bs1 := md

6. bt := at

7. bu :=au

8. bv  := av

9. bvw := aw

10. return b

Figure 3

EncryptBill

Input:  

k :K

a : Bill

Output:

b : Bill

1. Let a = (as1 , as2 , at , au , av, aw)

2. Let b = (bs1 , bs2 , bt , bu , bv, bw)

3. bs1 := as1
k

4. bs2 := as2
k  

5. bt := at
k

6. bu :=au
k

7. bv  := av
k

8. Return b

Figure 4

ShuffleBills
Input:

A* :  List<Bill>
k : K
P :Permutation

Output:
B* :  List<Bill>
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1. Let B*  =  (b1, …, bn)
2. r := GenRandKey()
3. For each 1 <= i <=n

3.1. bi := EncryptBill(r ,A[P(i)] )
4. Output B*

Figure 5

GetBillShuffleProof_CutAndChoose (cut and choose)

Input:
A*,B* : List<Bill>
k : K
P :Permutation

Output:
C  :Blob

1. Let A* = (a1, …, an)
2. Let B*  = (b1, … , bn)
3. Append s to C.
4. Repeat s times

4.1. Choose a random permutation Q.
4.2. Let Zs

* = (z1, …, zn)
4.3.  rs := GetRandKey()
4.4. For each 1 <= i <=n

4.4.1.  zs,i := EncryptBill(  rs , b[Q(i)]  )
4.5. Save Zs into C.

5. Let h := HASH(C)
6. Let hj  be the j-bit of h.
7. For j from 1 to s

7.1. If hj = 1 then
7.1.1. Let k' =  k  * rs

7.1.2. Append k' to C
7.1.3. For i from 1 to n do

7.1.3.1. Append Q(P(i)) to C.
7.2. If  hj = 0 then

7.2.1. Append  rs to C.
7.2.2. for i := 1 to n

7.2.2.1. Append Q(i) to C.
Figure 6

VerifyBillShuffleProof_CutAndChoose

Input:

A*,B* , C :Blob

Output:

Boolean
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 1. Extract s from stream C.

 2. Check that s is equal or higher than the expected security threshold.

 3. For i :=1 to s do

 3.1.Extract  Zs from C into D.
 4. Let h := HASH(D)
 5. Let hj  be the j-bit of h.
 6. Let A* = (a1, …, an)
 7. Let B*  = (b1, … , bn)
 8. If hj = 1 then

 8.1.Extract k' from C.
 8.2.For i from 1 to n do

 8.2.1. Extract j from C
 8.2.2. If index j has already been used, then return false.
 8.2.3. Check that Encrypt(bj, k')  = zi.  If not equal return false.

 9. If  hj = 0 then
 9.1. Extract rs 
 9.2. for i := 1 to n

 9.2.1. Extract qs,i from C.
 9.2.2. If index qs,i has already been used, then return false.
 9.2.3. Check that Encrypt(a[q(s,i)], rs)  = zi.  If not equal return false.

 10. Return true
Figure 7

GetBillShuffleProof_Linear (modexp  count  independent  on  the
number of elements)

Input:
A*,B* : List<Bill>
k : K
P :Permutation

Output:
C  :Blob
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8. Let A* =  (a1, …, an) where each bill is expanded in its components
9. Let B*  = (b1, … , bn) where each bill is expanded in its 

components
10. Append s to C.
11. For u from 1 to s

11.1. Choose a random value tu

11.2. If u<s/2 then W = A else W = B
11.3. Choose a deterministic cryptographically pseudo-

random subset Su of indexes of the elements in W based on tu 
as seed

11.4. w := Product (i in Su: Wi  )
11.5. ru := GetRandKey(seed= tu)
11.6. zu := EncryptBill(  rs , w )
11.7. Save zu into C.

12. Let h := HASH(C)
13. Let hj  be the j-bit of h.
14. For j from 1 to s

14.1. If (hj = 0) then
14.1.1. if (j<s/2)

14.1.1.1. Append  ts to C.
14.1.1.2. else
14.1.1.3. Append (k*ts) to C.
14.1.1.4. Append #Su to C
14.1.1.5. For i from 1 to #A*

14.1.1.5.1. if (P[i] in Su) then
14.1.1.5.1.1. Append i

14.2. If (hj = 1) then
14.2.1. if (j<s/2)

14.2.1.1. Append (ts*k-1) to C.
14.2.1.2. Append #Su to C
14.2.1.3. For i from 1 to #B*

14.2.1.3.1. if (P-1[i] in Su) then
14.2.1.3.1.1. Append i

14.2.1.4. else
14.2.1.5. Append  ts to C.

Figure 8

 GenPubPrivKey_Linear

Output
(y,g) : M
x : K

1. x := GetRandKey()
2. Let g be a fixed system-wide default generator.
3. y := gx

4. Return (y, g), x
Figure 8

 Sign
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Input
x : K
s1,s2 : M
u :Message

Output
(s,e) : M

5. k := GetRandKey()
6. r := gk

7. e := H(u || r )
8. s := ( k – x*e)
9. Return (s,e)

Figure 9

VerifySig

Input:

s,e: M

s1,s2 : M

u :Message

Output

b :Boolean

1. rv := gs*ye

2. ev := H(u || rv)
3. If e = ev then return True, else return False.

Figure 10

URePubKey

Input:

(y,g) : M

Output

(y',g') : M

4. k := GetRandKey()
5. y' := yk

6. g' := gk

7. Return (y',g')
Figure 11

To prove that  a owns a bill, the owner can show the secret value  s or prove he knows  s in zero
knowledge. If the owner shows s, then anyone can impersonate the owner and transfer the bill, so
the owner must prove the knowledge of s without revealing it. Also during the proof of knowledge
of s, the owner must be able to associate the identity of the receiver of the bill, so that the proof is
also a signature of the new address.
Bills can be created by money minting, such as when the solver of a block in a block-chain system
is rewarded, or when some bills are combined into a new bill. When a bill is created by money
minting,  the  exact  value  of  the  bill  is  public,  so  the  owner  must  commit  to  such  value,  and
everybody is able to verify the correctness of the construction of a new bill. When a bill is created
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by combination, it’s necessary to prove that the new bills value is in the acceptable range without
revealing the value. This is done by a special zero knowledge proof.  

Before the sender can transfer a bill, the sender must receive the public key (or address) related to
the receiver for the Ure-Schnorr signature scheme. The receiver doesn't need to generate an address
each time he receives a bill, since the sender can randomize the destination address by the universal
re-encryption procedure. To transfer the bill the sender broadcasts a special transaction where he
proofs the knowledge of the current destination address (the secret value s) and simultaneously and
atomically asks peers to replace the term as of the bill with a new destination address.

Encrypted bills are not self-describing and some information required to decode the contents of a
bill (more precisely the monetary value) need to be transferred on a private channel between the
parties  involved  in  the  transaction.  This  is  the  monetary  amount  unblinding  secret.  A split
transmission (public payment, private unblinding secret) is preferred to keep the block-chain, or any
other storage system for the transaction log, as small  as possible.   This private channel can be
supported by the same peer-to-peer network or by direct connection between payee and payer. If a
direct connection is used, then the Tor network can be used to maintain full anonymity. In this
paper, we will present another alternative, similar to the BitMessage protocol, in which the same
peer to peer network used for sending transactions is used to send informational messages. These
messages must be held in the network nodes memory for some time (e.g. 1 week). During that
period the payment receiver will be able to receive the associated information if he connects to the
network. When this period is over, the receiver would need to contact the sender to be sent the
associated information again. Also, the payer can send this information to an e-mail account of the
receiver.

In the following description, fields in brackets represent the additional description information that
must be sent by some other communication channel.

Destination Address

Our destination addresses are modeled by a tuple (y,x) where the the owner of the address knows s
such that y=E(s,x) (or y=xs in exponential notation). To sign, we need a proof of knowledge of s and
a certain message to authenticate. This could be done in zero knowledge and non-interactively using
a cut-and-choose method and Fiat-Shamir heuristic, nevertheless we'll use URe-Schnorr Signatures
that  has  the  advantage  of  much  shorter  signatures.  While  Schnorr  signatures  are  not  zero
knowledge, the security of this signature scheme has been well established in practice.
A destination address can be specified in a expanded or compact format. In the expanded format, a
destination address is the tuple (y,x). In the compact format, the destination address is a value y such
that  y=gs where  g  is  a  fixed  generator  specified  in  the  system.  For  example,  if  AppeCoin  is
implemented over Zp, and p is 1024 bits long, then the compact address format is 128 bytes long. If
AppeCoin is implemented over the elliptic curve secp256k1, then a compact destination address
size is 32 bytes long. Compact addresses are published by individuals to identify themselves, while
expanded addresses are found in bills.

Creation of Open Bills

An open bill is an encrypted bill whose monetary value is evident for all users. The creation of open
bills is needed for minting money. Money can be minted in different procedures of the p2p protocol.
For  example,  solving  a  block by generating a  proof  of  work is  generally rewarded by a  fixed
amount of minted currency.
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Given the value v publicly known, let x be the private key for the owner of the bill. The public bill a
is created by using the procedure shown in figure 15.

CreateOpenBill
Input

(s1,s2) : public key
v : Integer ( monetary value)

Output
a = (as1, as2, at, au, av, aw) : Bill

1. as1 :=  s1

2. as2 :=  s2

3. at :=d
4. au :=d
5. av :=dv

6. aw :=d
7. Return a

3.2 Payments

Payments are done by transferring the ownership of encrypted bills. To transfer the ownership of a
bill  a, the sender must prove the knowledge of the value  s in field  as = (as1,as2) and in the same
operation give  new field  as' which represents the new destination address,  such that the previous
field as is replaced by the new field. This is done by a signature of as' for the public key (as1,as2) (the
signature also cover some other fields transmitted).
Normal payments are uni-directional. The sender generates messages that use hybrid encryption.
The messages use the Schnorr public key of the payee as a Diffie-Hellman public key to generate a
Diffie-Hellman ephemeral key used for symmetric encryption. Symmetric encryption is specified
by the functions SymEnc(key,iv, msg) and SymDec(key,iv, msg), where the message is encrypted
in CTR mode using the given initialization vector iv.

Def:  A payment consists of one or two messages. The first is the  Public Transfer Message or
PT_MSG. The first message is spread within the p2p network. The second is the Secret Transfer
Message or ST_MSG.  The ST_MSG is transferred privately between the parties involved, using a
direct connection, using Tor or the p2p network itself.

Def:  Public Transfer Message or PT_MSG = < H(as), (c1, c2), h, (s,e) >
where

• H(as) is a cryptographic hash of the bill identification. If the receiver user is always online
and has a copy of the block chain, then H(as) should be enough to retrieve a. This field could
also be the minimum binary prefix that unequivocally identified the bill.

• as = (as1 , as2 ) is the identification of bill to transfer that must be changed, let a = (as1 , as2 , at ,

au , av, aw ).
• c1  replaces as1

• c2 replaces as2

• h is an optional sender provided cryptographic hash of the Secret Transfer Message that will
be sent along this message: h=Hash(ST_MSG). It can be used to prioritize and facilitate the
broadcast of the associated ST_MSG. This may be necessary in order to prevent spam STSs.
This is the only value not strictly related to the payment verification that must be stored
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along  the  transaction  and  cannot  be  trimmed.  Nevertheless,  since  the  size  is  fixed,  the
overhead is small.

• (s,e) is a signature of the whole PT_MSG (except for the signature itself) for the Schnorr
public key  (as1 , as2 ).

if AppeCoin is implemented over Zp, and  p is 1024 bits long, then the PT_MSG is 552 bytes. If
AppeCoin is implemented over the elliptic curve secp256k1, then the PT_MSG is only 168 bytes.

The  Secret Transfer Message or ST_MSG  message is essentially the encryption of a the secret
values (t,v,w) using a generic version of IES (Integrated Encryption Scheme).  When the private-key
encryptor E is implemented in in the discrete log setting, then the public key hybrid encryption
DLIES is used. If E is implemented on elliptic curves, then ECIES is used.

Def: Secret Transfer Message or ST_MSG (sent via the p2p network) = < H(as) , ek , em , tm , wsrc,

wdst >

where:
• H(as) is a cryptographic hash of the bill identification. as = (as1 , as2 )
• ek =  c1

k where  k is a random key.  ek will be used as one of the public terms that build a
Diffie-Hellman ephemeral encryption key.

• Let KDHE :=c2
k . KDHE   is a  Diffie-Hellman ephemeral key. Let s be the private key for the

Schnorr  public  key (c1,  c2).  Because  KDHE :=c2
k   and  c2=c1

s,   then  the  receiver  can  also
compute KDHE as ek

s = c1
ks  = c2

k.
• KE || IV || KM = KDF(KDHE ).  KDF is a key derivation function. If KDHE  is not a bit-string,

but a tuple, then  KDHE is converted to a bit-string. In ECIES, the x-coordinate of the point is
taken.

• KE is a symmetric encryption. IV is the chaining mode initialization vector
• KM is a MAC key
• em := SymEnc( Sk , IV, (t,v,w) ) (this is the monetary amount blinding secret)
•  tm := MAC( KM , em )
• wsrc is a small sender provided value (e.g. no more than 64 bytes) that can be used by the

receiver to identify the sender for reimbursements. In that case, this value is specified in the
wdst field.

• wdst is a small receiver provided value (e.g. no more than 64 bytes) that can be used by the
receiver to detect if the payment was sent to the receiver, without checking using expensive
modular exponentiation or requiring the private key s.

The  MAC computation and verification may not  be used,  since the  ST_MSG is  signed in  the
PT_MSG, and the receiver won't open a ST_MSG message before the associated PRM has been
received. Nevertheless, it's included to adhere to the standard.

SendBill
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Input
a = (as1 , as2 , at , au , av, aw ) : Bill
c : M
wsrc, wdst  : Binary-strings
x : K (the bill owner private key)

Output
PT_MSG = < z , (c1, c2), h, (s,e) >
ST_MSG = < z , ek , em , wsrc, wdst >

1. Compute z := H(as)
2. k := GenRandKey()
3. Compute ek := c1

k

4. Compute KDHE :=c2
k .

5. Compute KE || IV || KM :=KDF(KDHE)
6. Compute em := SymEnc( KE , IV, (t,v,w) )
7. Compute tm := MAC( KM , em )
8. Compute h := H(ST_MSG)
9. Compute (s,e) :=Sign( x, as1 , as2 , z || c1 || c2 || h)
10. Return PT_MSG and ST_MSG

Figure 12

A user can check that a bill has been sent to him by inspecting the field as of each bill a. But this
requires the user to access its private key. This could lead to attacks where the attacker tries to
extract side-channel information (such as timing each bill checks) in order to discover users the
private key. The field wdst allows users to check faster than a bill is for them, by providing the sender
with one-way authentication tag. For example, the receiver can provide a tuple (x,MAC(k',x)) where
k' is  a  private  key of  the  receiver.   Standard  MAC functions  evaluate  faster  than  public  key
constructions and are generally less sensitive to side-channel attacks.
Other reason why the field wdst is important is that generally is not recommended to use the same
key used to redeem the bills to check the destination of the bill. This is because the key to redeem
bills generally is stored in cold storage while the detection of incoming payments must generally be
done in real-time with far less protection measures.
The ST_MSG can be as low as 180 bytes for an implementation of AppeCoin on curve secp256k1.

CheckPTM
Input

PT_MSG = < z, (c1, c2), h, (s,e) >
Output

b :Boolean
1. Locate an unspent bill a with field as such that H(as) = z. This can be efficiently

done by indexing the unspent bills table with H(as). If not bill is found, then
return false

2. If VerifySig( (s,e) ,  (as1 , as2) ,z || c1 || c2 || h) = false, then return false
3. Return true

Figure 13
ReceiveBill
Input

PT_MSG = < z, (c1, c2), h, (s,e) >
ST_MSG = < z  , ek , em , tm, wsrc, wdst >
s : Key (the receiver’s private key)

Output
b :Boolean
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1. Compute h := H(ST_MSG)
4. Verify that H(ST_MSG) = h. If not return false.
5. Check  that  the  additional  authenticated  data  wdst corresponds  to  the

PT_MSG/ST_MSG message data. Use table lookups, MACs or any other fast
authentication  method protected  from side-channels.  If  the  receiver  does  not
accept empty wdst values, and wdst is empty, then return false.

6. Check that the additional data wsrc is valid, if not then return false.
7. Compute c1' := c2

s. If not (c1' = c1) then return false.
8. Compute KE || IV || KM :=KDF(KDHE)
9. Compute tm' := MAC( KM , em )
10. Check that tm' = tm. If not, return false.
11. Compute (t,v,w)  := SymDec( KE , IV, em )
12. Compute av' := au

(t*v*w). If not (at' = at) then return false.
13. Compute at' := au 

t. If not (at' = at) then return false.
14. Compute aw' := au 

w. If not (aw' = aw) then return false.
15. Return true

Figure 14

Checking Public Transfer Messages

Every user must check PT_MSGs are valid by executing the function CheckBill, described in figure
13.
Even if the bill payment seems invalid to the receiver, it may look completely valid for the rest of
the network.

Accepting Payments

To accept a bill as payment the function ReceiveBill is executed. If the bill is valid for the receiver,
the  function  returns  true.  Note  that  the  receiver  must  pair  each  PT_MSG  messages  with  the
corresponding  ST_MSG  message  in  order  to  decide  if  the  payment  will  be  accepted  or  not.
Obviously,  the  receiver  may also check that  the  received amount  is  the  expected  amount.  The
function to receive a bill is shown in figure 14.

Def: A Bill Creation Message or BC_MSG is the tuple (a,v) where
• a is a bill
• (as1, as2) is a public key
• at :=d
• au :=d
• av :=dv

• aw :=d
• v is the bill value, which must be in a valid range.

Proof that bills are still valid after public encryption

We must prove that after encryption, even if every field of a bill is encrypted with an unknown key
k, the same properties regarding the bill value hold. Suppose the original bill is a is a = (as1, as2, at,
au, av, aw). Let s, t,v,w be the secret values stored by the bills owner such that:

• as1=  as2
s

• at = au
t
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• av = au
twv

• aw= au
w

After encryption we have:
• bs1= as1

k

• bs2= as2
k

• bt = at
k

• bv = av
k

• bw= aw
k

We can easily prove the required conditions still hold:

• as1=  as2
s => as1

k=  as2
sk => bs1=  as2

ks => bs1=  bs2
s

• at = au
t => at

k
 = au

tk  => bt = au
kt

 => bt = bu
t

• av = au
twv => av

k
 = au

twvk  =>   bv = au
ktwv 

 =>  bv = av
twv

• aw = au
w => aw

k
 = au

wk  => bw = au
kw

 => bw = bu
w

3.3 Bill subdivision

A Bill  subdivision allows  a  user  to  subdivide  a  bill  a into  bills  of  smaller  amounts  without
disclosing  such  amounts. The  bill  subdivision  consists  of  a  single  message  (Bill  subdivision
Message or BS_MSG) that must be published in the p2p network. The idea behind bill subdivision
is that the sender decomposes the encrypted bill into two or more encrypted bills. The monetary
values of each new bill must add up to the monetary value of the original bill. To simplify the
description, we'll show how to divide a bill in only two bills. The process can be applied recursively
to divide in more parts. Nevertheless, the same process can be applied to divide a bill directly in
multiple sub-bills with small modifications.

Def: A Bill Subdivision Message or BS_MSG is the tuple
< H(as), b,c, DECOMP_PROOF(a, b, c,n,m), (s,e) >

where:
• H(as) is a cryptographic hash of the bill identification.
• as = (as1 , as2 ) is the identification of bill to transfer that must be changed, let a = (as1 , as2 , at ,

au , av, aw ). The bill a is disposed after the message is accepted, and the new bills b and c will
be added to the database of active bills.

• b and c are new bills to create. The monetary values of b and c add up to the value of a.
• n, m is the range of the monetary value to subdivide. Using a reduced range allows to build

shorter proofs (but it may leak an upper or lower limit on the amount decomposed)
• DECOMP_PROOF(a, b, c, n,m) is a non-interactive proof of decomposition of a into b and

c.
• (s,e) is a signature of the whole PT_MSG (except for the signature itself) for the Schnorr

public key  (as1 , as2 ).

We'll protocols for a proof of decomposition. The first protocol (DECOMP_PROOF1) is easier to
understand an analyze. The second protocol (DECOMP_PROOF2) is an optimization of the first,
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where some operations are merged to reduce the proof size and verification time. For all these
definitions let:

• a = (as1 , as2 , at , au , av, aw ).
• b = (bs1 , bs2 , bt , bu , bv, bw ).
• c = (cs1 , cs2 , ct , cu , cv, cw ).

Proof of Decomposition

Def: DECOMP_PROOF(a, b, c,n,m) is a proof that:
1. If the values of the bills a, b and c are va, vb, and vc respectively, then va = vb + vc

2. vb and vc are positive and in the range [2n .. 2(m-n+1)]

We define two different splitting protocols DECOMP_PROOF 1 and DECOMP_PROOF2
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DECOMP_PROOF1
Input:

a, b, c : Bill
Output:

 bv' , cv' , at', aw ', av' ,  bv'' , cv'' , zb' ,  zc' : Key
Pk , Pbq , Pbz , Pbd  , Pcq, Pcz , Pcd : Blob

1. Compute bv' , cv' , at', aw ', av' , Pk , k = AddZerosSplitEncryptWithProof(at, aw , 
av , vb , vc)

2. Compute Choose a random key qb

3. Compute (bu , bt, bw , bv'' ), Pbq  = EncryptWithProof( (au , at', aw', bv') ,  qb )
4. Compute (bv , zb' , Pbz , Pbd  ) = RemoveZerosWithProofs(bv'', bt, , - kb*qb ,  w*vb)
5. Choose a random key qc

6. Compute (cu , ct, cw , cv'' ) , Pcq = EncryptWithProof(  (au ', at', aw', av',) ,  qc )
7. Compute (cv , zc' , Pcz , Pcd  ) = RemoveZerosWithProofs(cv'', ct , - kc*qc ,  w*vc)
8. Return (bv' , cv' , at', aw ', av' ,  bv'' , cv'' , zb' ,  zc' ,Pk , Pbq , Pbz , Pbd  , Pcq, Pcz , Pcd )

Correctness Analysis of protocol SPLIT_PROOF1 for branch b (branch c is equivalent):

After step 1: 
az = av * z
av'  = az

k = av
k * zk = au 

t*w*v* k * zk 

bv' =  at 
w*v(b)* k  * z k(b)

Pk proves the knowledge of k
After step 3:

bv'' = bv' q(b)
 = at 

w*v(b)* k *q(b)
 
 * z k(b)*q(b)

Pbq proves the knowledge of  qb

After step 4:
zb' = z -k(b)q(b) ; Pbz  proves the knowledge of -k(b)q(b)
bv  =  bv''  *  zb'  = at 

w*v(b)* k *q(b)
 
 * z k(b)*q(b) * z -k(b)k(b)  = at 

w*v(b)* k *q(b) = bt 
w*v(b)

Pbd   proves the knowledge of  w*vb such that
bu 

t*x= bt 
x  =at 

w*v(b)* k *q(b) = bt 
w*v(b) =bu 

w*t*v(b)

Def: VerifyEncryption( L2 : List<M>, L1 :List<M>, k : K) returns true iff for every element at index
i , L2[i] = L1[i]k

DECOMP_PROOF1_Verify
Input:

a,b,c, bv' , cv' , at', aw ', av' ,  bv'' , cv'' , zb' ,  zc'  :Message
Pk , Pbq , Pbz , Pbd  , Pcq, Pcz , Pcd : Blob

Output:
b :boolean

1. if  not VerifyEncryption ( (at', aw ', av' ) , (at, aw , av * z ), Pk ) then return false
2. Verify that bv'  * cv'  = av' , if not then return false
3. If not VerifySlice (au , at', aw', bv' , bv , bv'' , zb'  ) , Pbq , Pbz , Pbd) then return false
4. If not VerifySlice (au , at', aw', cv' , cv , cv'' , zc'  ) , Pcq , Pcz , Pcd) then return false
5. return true

VerifySlice
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Input:
au , at', aw', bv' , bv , bv'' , zb'  : Message

Output:
b :boolean

1. if  not VerifyEncryption ( (bu , bt, bw , bv'' ) ,  (au , at', aw', bv' ) , Pbq) then return false
6. if  not VerifyEncryption ( (zb' ,  z ) ,  Pcz) then return false
7. Verify that bv = bv'' * zb'
8. if  not VerifyEncryption ( ( bv , bt ) ,  Pcd) then return false
9. return true

AddZerosSplitEncryptWithProof
Input:

at, aw , av , w, vb, vc :  Message
Output:

bv' , cv' , at', aw ', av' : Message
Pk  : Blob
k  : Key

1. Choose two random keys kb and kc.
10. Let k = kb + kc

11. az = av * z
12. Compute (at', aw ', av' ),Pk  = EncryptWithProof( at, aw , az, k)
13. Compute  zb = z k(b)

14. Compute  zc = z k(c)

15. Compute bv' = at ' w * v(b) *  zb

16. Compute cv' = at
 ' w * v(c) *  zc

17. bv' and cv'  should verify that bv' * cv'  =at
 w *( v(b) + v(c) ) * k * z ( k(b) + v(c) ) =av'

18. Return bv' , cv' , Pk  , k

EncryptWithProof
Input:  

X : List<Message>
Output:

Y : List<Message>
Pk : Blob
1. Compute Y  = Encrypt( X, k)
9. Compute Pk = EQKEY_PROOF( Y, X, k)

RemoveZerosWithProofs
Input:

x, b, kz , kd

X,Y : List<M>
Output:

y,  z', Pz , Pd

1. Compute  z' = z k(z)

10. Compute y =  x  *  z'
11. Compute Pz = KEY_PROOF(  z' , z ,kz )
12. Compute Pd = EQKEY_PROOF(  <y  > || Y ,  <b> || X,  kd )
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Def: EQUALGEN_PROOF( X :List<M>, Q : List<K>, g :M)

Is a non-interactive proof that each element in X is an encryption of g under a known key.
It is equivalent to the concatenation of, for each possible i , KEY_PROOF(x[i]Q[i],g, Q[i]).
We'll give two implementations, the simple one (EQUALGEN_PROOF1), is the application of the
definition.  The  second  (EQUALGEN_PROOF2)  based  on  the  random  subset  problem  which
requires less processing and less space if the number of elements is greater than half the security
threshold.

EQUALGEN_PROOF1
Input:

X :List<M>, Q : List<K>, g :M)
Output:

B :Blob
1. For i in [0..Length(X)-1] do

1.1. Compute Pe(i) = KEY_PROOF(x[i]Q[i], g , Q[i])
1.2. Append Pe(i) to B

2. Return B

EQUALGEN_PROOF2 (something is missing here)
Input:

X :List<M>, Q : List<K>, g :M)
Output:

B :Blob
3. For s in [1.. securityThreshold]

3.1. Let I be a random subset of elements of valid indexes i.
3.2. Compute R = Product(i in I: x[i]Q[i] )

3.2.1. Compute Pe(i) = KEY_PROOF(x[i]Q[i], g , Q[i])
3.3. Append Pe(i) to B

4. Return B

Def: KEY_PROOF(m :M, g :M, k :K), which is a zero knowledge proof that g encrypts to m  with 
a key k known to prover.

Def: EQKEY_PROOF( Y :List<M>, X :List<M>, k :K)  which is a zero knowledge proof that the 
list Y is the result of encryption of the list X with the key k. This can be accomplished by multiple 
calls to KEY_PROOF.

First we'll define some auxiliary proofs (SPLIT_PROOF and INRANGE_PROOF):

Def: SPLIT_PROOF(a, b, c) is a proof that:
1. The bills b and c are valid bills
2. If the monetary values of the bills a, b and c are va, vb, and vc respectively, then va = vb + vc

Proof of Range of Amount
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Def: INRANGE_PROOF(a,n,m) is a proof that a bill a (which is encrypted by key k) represents a
valid amount  of money greater  or equal  to 2n and lower than 2(n+m).  This proof can ensure the
amount is positive and restricted to a certain valid range (no overflow has occurred).

INRANGE_PROOF
Input:

a : Bill
n,m :Integer

Output:
 (Pz , Ps ,  , Pq , Pt , Pw  ) : Blob



AppeCoin 0.30        27/30

1. Build a list of unit value powers from n to m.  
A = < au

2^n, au
2^(n+1), au

2^(n+2),..., au
2^(m-1), au

2^(m) >
2. Build a list of private powers of the zero value generator. Each element is encrypted 

with a unique private randomization factor r(i).  
Let N = (m-n+1)  
Zr = < zr(0),  zr(1), … ,  zr(N-2), zr(N-1) >
R = < r(0), … , r(N-1) >

3. Now each element in A is multiplied by an element of Zr, building the list B:
B = < au

2^n* zr(0), au
2^(n+1) * zr(1), ..., au

2^(m-1)* zr(N-1)  >. 
#B = N
The multiplication “*” represents the homomorphic operator on messages.

4. A second list of single zeros is built. Each element is encrypted with a unique 
randomization factor l(i). 
Z = < zl(0),  zl(1), … ,  zl(N-2), zl(N-1) >. 
L = < l(0), .. , l(N-1) >
#Z = N.

5. Compute  Pz = EQUALGEN_PROOF( Zr  || Z , R || L , z). This is a proof that each of the
values in Zr  || Z is an encryption of z under the corresponding key in the list  R || L.

6. Compute C = B || Z. C is the concatenation of B and Z. #C = 2*N
7. Now C will be shuffled with the permutation P and each element will be re-encrypted 

into with a private key k into the resulting vector D. We add three first elements to the 
list (elements av , at and aw ) which are encrypted but not shuffled. These three elements
are witnesses of the encryption.
Compute (H , k , Ps) = ShuffleSkipWithProof( < av , at , aw > || C , 3)

8. We therefore have:
H = < av', at ', aw' > || D 
av', = av

k , at' = at
k , aw'  = aw

k

D = < CP(1)
k, … , CP(2*N)

k >
9. Let v be the monetary value of a. Let  v [j] be the j-bit of the binary representation of v. 

We'll extract exactly N elements of D and Z and form the set D'. Let I be set of the 
indexes of the elements of D that are extracted into D'. An element cannot be extracted 
twice.

10. Let D' be an empty list.
11. For each 0<=j <N: 

If v [j+n]=1, then the element (au
2^(j+n)* zr(j))k , originally from D, is added to the list D'. 

If vb [j+n]=0, then any element at index i, (zm(i))k , originally from Z, is added to the list 
D'.

12. Compute x  = Prod (0 <= i < N: D'[i] ). 
x will be equal to au

v  * k * zq, for some secret exponent q.
13. Now we remove the zeros (terms generated by z with a known key) of D' with a proof 

than only zeros are removed. Let z' = zq

14. Compute Pq = KEY_PROOF( z', z, q ). Here we prove that z' is a power of z, without 
publishing q.

15. Let x ' = x * z' -1  = au 
v  * k

16. Now is must be the case that  x ' tw = av', because 
av' = av

k  = av
k 

x ' tw  = au 
v  * k * t* w=  au 

v  * k * t* w =   au 
 t* w *v* k = av 

k,

17. Now we'll prove that we can reach av' from x' by encrypting with t and w. 
Let xt = x' t = au

v  * k * t

18. Compute Pt = EQKEY_PROOF( (xt', at ), (x' , au
 ) , t). This proves that xt' is the 

encryption of x' and that at is the encryption of au
  using the key t )

19. Compute Pw = EQKEY_PROOF( (av' , aw), (xt' , au
 ) , w). This proves  that av' is the 

encryption of xt' and  aw  is the encryption of au
 using the key w.
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Def: DECOMP_PROOF2(a, b, c,n,m) = < Pb, Pc > where
• av =  bv * cv

• Pb =INRANGE_PROOF(b,n,m)
• Pc =INRANGE_PROOF(c,n,m)

Def: DEC_MSG(a, b, c, n,m) is the message =
< a, b, c, n, m , DECOMP_PROOF(a, b, c,n,m)>

Bill combination (this section is incomplete)

To combine bills a message similar to the bill subdivision is composed:

Def: Bill combination message = <  a , b, c ,n, m, P >

Where:
• a is the bill to create by combination of the remaining bills.
• b and c are the new bills to combine. These bills must be discarded afterward.
• P is a DECOMP_PROOF(a, b, c,n,m)

Optimized Proofs for certain HCGCs

We have described proofs that work for an abstract HCGCs, without considering any property of an
specific HCGC.  All the presented proofs rely on the cut-and-choose method. We’ll now present
optimized proofs that work with the Poligh-Hellman HCGC.
 
Proof of knowledge of Encryption Key

Def: KEY_PROOF(b,a,k)  is  a  proof that the owner knows a private  key  k that  allows him to
encrypt a into b, without revealing k.

There are several methods to achieve this proof, either interactively or non-interactively. There are
other methods designed for the Pohlig-Hellman HCGC, such as the Schnorr’s Id Protocol.

Proof of knowledge and equivalence of Keys

Def: EQKEY_PROOF(  k , (a1,b1) , ... , (an,  bn) ) which is a proof that each  ai encrypts to the
corresponding bi  with a the same key k and that key is known to the prover, without revealing k.
To achieve this proof, we can use the Chaum-Pedersen protocol.

Proof of Correct Shuffle

Def: SHUFFLE_PROOF(a1, .. , an , b1, .. , bn , k1, .. , kn) is a zero knowledge proof of correctness of
the shuffle and re-encryption operation of a1, .. , an  into b1, .. , bn with keys k1, .. , kn.
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As with KEY_PROOF, there are several methods to achieve this proof. And again, the most studied
method is the cut-and-choose proof. The method to create the proof of shuffle of elements of M is
similar to the method described in the  GetShuffleProof procedure to create a proof of shuffles of
bills.

Bill mixing

It's sometimes necessary to shuffle a set of bills together to increase anonymity and avoid 
traceability. To do so the shuffler publish the following message:

Def: Bill mixing Message = < a1, .. , an , b1, .. , bn , P >
Where:

• a1, .. , an are the original bills to be mixed. These bills must be discarded afterwards.
• b1, .. , bn are a permutation and re-encryption of the bills a1, .. , an with a single key k.
• P = GetBillShuffleProof(a1, .. , an , b1, .. , bn , k) is a proof of correctness of the shuffle/re-

encryption operation  

3.4. Optimized Shuffle proofs

To  allow  the  mixing  of  hundreds  of  bills  without  requiring  high  amounts  of  work  by  each
verification  node  of  the  network,  we  present  an  optimized  shuffle  proof  protocol  and  its
corresponding non-interactive counterpart.

The optimized shuffle proof (GetBillShuffleProof_Linear) is based on a mixture of the Random-
subset Test and the cut-and-choose protocol.  In the interactive version, there is an source list of
bills  and  a  destination  shuffle-encrypted  list  of  bill.  At  each round the  prover  re-encrypts  and
shuffles the destination list of bills to create a temporary list of bills, using a secret round key. Then
every source bill is decomposed in its components ( as1,  as2

s,,  at  ,  av  , aw,  au) and all components are
stored ordered in a vector. The verifier provides a random seed and a coin flip, and the prover
generates a pseudo-random sub-set of indexes in the vector using the received seed and selects the
components contained in those positions. Then the verifier multiplies all selected components and,
depending on the flipped coin value:

a) shows a set of indexes in the temporary bill list and the result of multiplying all of them. Shows a
compound key (original encryption key multiplied by round key) that maps the multiplication of the
selected source components to the multiplication of temporary components, where mapping is the
Bill re-encryption function. Because of the Representation Problem, finding the a different subset
that, being multiplied, has the same result is difficult.  The verifier verifies these operations and
accepts only if they are correct.

b) shows the round-key and the permutation used (this can be shown as a seed for a pseudo-random
generator of permutations or as the full  permutation).  The verifier  chooses a random subset  of
components  (or  the  same  subset  that  the  seed  generates),  multiply  them and  check  that  their
multiplication equals the multiplication of the elements in the temporary list that match the source
sub-set by the permutation.

The probability that the prover cheats the verifier in each round is ¾ (higher than ½ as in the stander
cut-and-choose protocol). This can be corrected simply by adding more rounds accordingly.
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The protocol can be easily turned into a non-interactive proof using the Fiat-shamir heuristic. Each
seed and the coin-flip in each round are obtained as outputs of a pseudo-random generator whose
seed is obtained from a commitment hash. The commitment hash forces the prover to commit to
every temporary list chosen. In the non-interactive proof, it's not necessary that each temporary list
is  explicitly  part  of  the  non-interactive  proof.  The  commitment  hash  can  be  built  as  the
concatenation of hashes of the temporary round lists, and all temporary list hashes are included in
the non-interactive proof. If the coin flip requires the compound key to be shown (case a) then the
temporary list of that round is revealed. If the coin flip requires the round key (case b) then the
temporary list can be computed by the verifier using the round key and it can be checked against the
corresponding hash.
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