Quantum Resistant Public Key Exchange — The
Supersingular Isogenous Diffie-Hellman Protocol

Hartwig Mayer
{hartwig.mayer } @coinfabrik.com

CoinFabrik

October 14, 2016

1 Introduction

Quantum computers clearly form part of the most exciting industrial and academic re-
search. Their impact on cryptography would be immense, and according to the Report
on Post Quantum Cryptography by the National Institute of Security and Technology it
is time to search for quantum resistant cryptographic primitives.

On the other hand, many challenges of the quantum mechanical world must be over-
come before large quantum computers become a reallity. One of these challenges is
decoherence: the problem of having uncontrolled interaction of the quantum register
with the environment. Prototypes for Qubits in the register of a quantum computer may
be built by hydrogen atoms or electrons, instead of being built by capacitors of clas-
sical computers. Therefore, when the very fragile states of Qubits are manipulated by
a quantum gate for computations, quantum entanglements which disturb the quantum
computations themselves can occur.

Leaving the practical issues aside, the first rigorous definition of a quantum Turing
machine was set forth in [Deu85| by D. Deutsch in the 80s. Based on this definition,
Grover, Shor, Simon and others demonstrated that the search for quantum computers was
worthwhile. For example, Shor’s algorithm [Sho97], [BL95] solves the discrete logarithm
problem over finite fields and over elliptic curves on a quantum computer in polynomial
time. A classical computer cannot efficiently solve this problem. As a consequence,
large quantum computers would make many cryptosystems obsolete and necessitate Post
Quantum Cryptography (PQC) (see here).

In this article we will look at the Supersingular Isogenous Diffie-Hellman (SIDH) pro-
tocol which is considered a promising candidate for PQC. In contrast to regular Elliptic
Curve Cryptography where the points of one elliptic curve are used for secret compu-
tations, the SIDH looks at the world of elliptic curves from a far. Loosely speaking, in
SIDH the points of individual elliptic curves recede and the curves themselves are used
in the construction of shared secret keys. We explain this in section 3 (see Table [1] for a

http://www.coinfabrik.com/
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://hyperelliptic.org/tanja/vortraege/indo-PQ.pdf

quick overview). In section four we briefly discuss security aspects and recent work by
Costello, Longa, and Naehrig [CLN16| presenting a high-speed implementation of SIDH.

2 The Power of Quantum Algorithms — Two Examples

To lower the expectations about quantum computers a little bit, note that classical
computers can simulate them. This implies that all problems a quantum computer can
solve, can also be solved on a classical computer. But some problems that a quantum
computer can solve in polynomial time would require exponential time on a classical
computer. And this is the interesting point.

Let us review the basic difference between quantum and classical computers. In a
classical computer one Bit can assume two states which are usually denoted by 0 and
1. The register of a computer with N Bits can hence realize 2V possible states. In
a quantum computer the basic units are called Qubits and their states are written in
the form |0) and |1). The difference with Bits is that Qubits also allow superpositions
of these states. This is expressed in mathematical terms as «|0) + 5|1) with o, € C
normed such that |a|? + |3|> = 1. Moreover, a quantum register with N Qubits can
represent linear combinations of the individual Qubits, and is hence a 2V dimensional
space. Therefore, a quantum Turing machine can deal in some sense with multiple inputs
at the same time, e.g %|0> + %H) This effect is called quantum parallelism and allows
us to develop more efficient algorithms for some types of problems.

DEUTSCH’S ALGORITHM:

Problem: Given a function f : {0,1} — {0,1} as a black box. Decide whether the
function f is constant or not.

To solve the above problem, all algorithms for classical computers have to call the function
f for 0 and 1, and compare the values. Deutsch’s algorithm for quantum computers only
need to call f once in order to check whether f is constant or not: Assume a quantum
computer with a 2-Qubit register |z)|y) and a quantum gate which performs the following
operation

U(lz)ly)) = |x)ly + f ()

where the addition is modulo 2, i.e. in Z/2Z. The quantum register should be in the
superposition:

0) +11)10) — 1)

[2)|y) = 7 7

If we calculate the effect of U, we derive

10) + 1) 1£(0)) — 1£(0))
V2 V2

U(lz)ly)) = %U(|0>|0> —[0)[1) + [1)[0) = [1)[1)) =

where f(0) is 0 or 1 depending on whether f(0) was 1 or 0, respectively. Deutsch’s

algorithm is based on the fact that the first Qubit is % when f is constant and
[0)—[1)

v if it is not, so only one call of f is required.
Note that it is still impossible to know all values of f with one call. What we gain
in general is only some knowledge about global properties — in this example, whether f

is constant or not.

SHOR'S ALGORITHM: Let E/F, be an elliptic curve over a finite field F, (see Figure
below), and assume that the cardinality |E(F,)| = r is a prime. Fixing a basepoint
Py € E(F,), the Discrete Logarithm Problem (DLP) reads as follows:

Problem: Given a point @ € E(F,) find the smallest positive integer a such that
Q =a- Po.

D. Boneh and R. Lipton generalized Shor’s algorithm so that DLP can also be solved
over elliptic curves in random quantum polynomial time, i.e. efficiently on quantum
computers. In order to do so, they restate the problem as: Let f be a function

f:7* — E(F,)

given by f(z,y) := h(z + ay) (o € Z) where h : Z — E(F,) is the homomorphism
a +— h(a) := a- Py. This type of function is referred to as a hidden linear function.
Theorem 2 in [BL95| states that for such functions the integer o can be computed in
quantum polynomial time with respect to r. To solve the initial problem, they consider
the function f(z,y) = h(z)+y-Q = h(x) +y-h(a) = h(x +ay), which is a hidden linear
function, so their algorithm can determine a in polynomial time.

The proof of their theorem has the following basic structure: One does a quantum
experiment @ and defines a subset V of all possible observable values of Q@ such that:

1. If we observe v € V, the integer a can be determined in polynomial time (on both
classical and quantum computers). See [BL95], 6.2.

2. The probability of observing an output v € V is great enough that the necessary
repetitions can on average be performed in polynomial time. See [BL95] 6.3 and
6.4.

The essential part of the quantum experiment Q, is the application of the Quantum
Fourier transform Fy to the function f at random values for x and y. Shor’s original
insight allows the Quantum Fourier Transorm to be performed in quantum polynomial
time (see [Sho97|, chapter 4 for details). Finally, one has to define the set V and prove
that it has the properties stated in 1 and 2. This is beyond the scope of this article and
is clearly explained in section 6 of the article [BL95].

3 Supersingular Isogenous Diffie-Hellman Protocol

The Diffie-Hellman protocol works generally for any finite (commutative) group, e.g.
Z/pZ. But as we have just seen, Shor’s algorithm can be used to efficiently attack this

protocol. Therefore, the idea of SIDH is to mimic the protocol but to avoid working with
a group.

When applied to elliptic curves, the Diffie-Hellman protocol works on an elliptic
curve F with a fixed basepoint Py € E. The two participants A and B then share a
secret key Sp which is a new point on the elliptic curve E obtained by group operations
applied to the point Py (see left column of Table 1). The Supersingular Isogenous Diffie-
Hellman protocol works on the set of elliptic curves and fixes a "'basecurve’ Fy. The two
participants A and B then share a secret key Sg which is a new elliptic curve obtained
by applying a special map to the curve Fy (see right column of Table . This map is an
isogeny — the I in SIDH — and ’replaces’ the group operation. Figure [I| defines isogenies.

Objects: Elliptic curves

An elliptic curve E/F is the set of
all points (x,y) € Fy x I, satisfying

Maps between Objects: Isogenies

Let E, E' be two elliptic curves over
F,. An isogeny is a rational map

E:y*=2"+Ax+ B (A,B€F,). ¢: E— E
Y H Y Y Y
The following graphic illus- (z,9) = (f(2,9), 9(z,9))

trates a possible elliptic curve: with f,g : E —s TF, rational func-
Y9 . q

tions such that ¢ respects the group
structures on E and F’, i.e.

(P +Q) =o(P)+ ¢(Q)
for all P, € E. Note:

The set E . truct e isogenies are surjective, i.e.
e set I/ carries a group structure
Browp O(E) = B!

'+’ with a neutral element Opg.
The set of points with coordinates

in [F, is denoted by E(F,).

e a finite subgroup of E defines
an isogeny, and vice versa.

Figure 1: Basic ingredients of SIDH.

The SIDH protocol utilizes the fact that there is a one-to-one correspondence between
finite subgroups of an elliptic curve E and isogenies ¢ : E — E’ starting from E. To
construct an isogeny from a finite subgroup one can use Velu’s formulas which provide
an explicit equation for the target curve E’. To obtain a finite subgroup out of ¢ one
can simply take the kernel of ¢, i.e. ker(¢) := {(z,y) € E|¢(z,y) =Op'} C E.

Then, choose a prime p = (52057 - f £ 1 where {4 and g are small primes and f is a
cofactor. A supersingular elliptic curve Ep can be constructed over the finite field I
with these parameters. We choose to use supersingular elliptic curves for two reasons:
security which we explain in the next section, and faster computation of isogenies since

| EC-DH | SI-DH |

PuBLIC E elliptic curve &€ = { E| E elliptic curve }
Basepoint Py € E 'Basecurve’ Ey € £

PRIVATE ng € 7 ¢4 : By — E 4 isogeny

KEYS ng € Z ¢p : By — Ep isogeny

PUBLIC Qa=P*€E Ex=¢a(Ey) €&

KEYS QB:P(?B ekl EBZQZ)B(E()) €&

SHARED QaB = (QB)nA Eip = ¢£4(EB) (!IlOt CZSA')

Key Qpa = (Qa)"? Epa = ¢5(Ea) (Inot ¢p!)
Qap =Qpa=:5p Esp=FEpa=:Sg

KDF E.g z-coordinate of Sp € F, | j(Sg) € Fy

Table 1: Analogy between ECDH and SIDH with participants A and B.

Ey has smooth order. The cardinality of Ey is |Eo(F2)| = (¢ €% - f)?. Moreover, the
torsion elements Ey[('] := {P € Ey|[{°4P = Og} of supersingular elliptic curves have
coordinates in [F2. As a result, the computations of isogenies are fast (compare [D.JP14],
section 2). Since ¢4 fp and £p fp we have that

Bl =2/t L ©L/ELT = (Pa, Qa)
E{P) =237 & L/HFT = (PB,QB)

with generators Pa, Qa, Pp,Qp which have smooth order and are defined over .

SIDH Protocol: The supersingular elliptic curve Ey/F,z2, the basis {Pa, Qa} for E[¢5],

and the basis {Pg, Qp} for E[(/?] are all public.

p?s

SECRETE KEYS:

I. A secretly chooses ma,na € Z/{5'Z, not both divisible by £4, and computes
an isogeny ¢4 : Fg — E4 with kernel (maPs 4+ naQa).
II. B secretly chooses mp,np € Z/{7 Z, not both divisible by £, and computes
an isogeny ¢p : Fg — E4 with kernel (mpPp + npQp).
PuBLiCc KEYS:

I. A publishes E4 and the points ¢4(Pp),d4(Q@p) (but keeps ¢4 secret).
I. B publishes Ep and the points ¢p(Pa), pp(Q.a) (but keeps ¢ secret).

SECRETE SHARED KEY:

I. A computes an isogeny ¢y : E4 — Eap with kernel (ma¢p(Pa)+napp(Qa)).
II. B computes an isogeny ¢’ : Eg — Epa with kernel (mpoa(Pp)+npoa(Qn)).

II. Esp and Epa are isomorphic (as ¢y 0 ¢4 and ¢’z 0 ¢ are isogenies with the
same kernel). Hence, j(Eap) = j(Epa) € F)2 serves as a shared secret key.

5

Note that the constructions of the elliptic curves F4g and Eg4 do not result in the same
elliptic curve, only curves which are isomorphic (see [Was08|, Proposition 12.12). To
obtain a secret key, one can make use of a well-known function in number theory, the
j-function j : &€ — I, defined by

4A3
(F) :=1728————
JE) 4A3 4+ 27B?
for E : y?> = 23+ Az + B which has the property that two isomorphic elliptic curves have
the same j-value - in our case j(Eap) = j(Epa) € F 2!

4 Security and Performance Aspects of SIDH

Shor’s algorithm can only be applied to protocols which work in finite groups, such as the
Elliptic Curve Diffie-Hellman protocol. The SIDH protocol works on a set which does
not carry a group structure and uses isogenies to construct secret information instead of
using group operations. Therefore, Shor’s algorithm and its generalization by Boneh and
Lipton cannot be applied to SIDH. Thus the '’ in SIDH protects the protocol against
Shor.

To explain the 'S’ in SIDH one must remember that elliptic curves over finite fields
fall into two categories — ordinary and supersingular elliptic curves (see [Was08], p. 130
for a definition). The main reason to work with supersingular elliptic curves — the
S — is that Childs, Jao, and Soukharev’ algorithm in |[CJSI4] can compute isogenies
between ordinary elliptic curves in quantum subexponential time. Since ordinary curves
are essential for their algorithm (in this case the endomorphism ring is commutative),
their ideas cannot be applied to supersingular elliptic curves.

SECURITY OF SIDH: The mathematical problem the security level of SIDH can be re-
lated to is analogous to the Decisional Diffie-Hellman problem for elliptic curves — the
Supersingular Decisional Diffie-Hellman problem (SSDDH). Its precise formulation can
be found in Table [2[below. De Feo, Jao, and Plat were able to prove in [DJP14| that
SIDH is secure in Canneti-Krawczyk’s adversarial model if SSDDH is assumed to be com-
putationally infeasible. It is conjectured that this problem is computationally infeasible,
and the best known attacks on SSDDH to date are the following:

(i) To compute isogenies between supersingular elliptic curves:
On classical computers: Running time O(p'/?) (Delfs and Galbraith).
On quantum computers: Running time O(p'/4) (Biasses, Jao, and Sankar).

(ii) As the order of the subgroup defining the isogeny is public, the problem can be
modeled as a ’claw problem’:
On classical computers: Running time O(p'/*) (Tani and Zhang).
On quantum computers: Running time O(p'/6) (Tani and Zhang).

In all cases, the running time is exponential in the field size, and SSDDH is infeasible
with all known strategies.

Supersingular Decisional Diffie-Hellman Problem

Let Ea, Ep,¢A(Pp), #a(QB),¢5(Pa), and ¢p(Q4) be the public pa-
rameters and public keys as described in the previous section. Then:

Given a tuple with probability 1/2 from the following two distributions:

e (Ea,EB,04(PB), $4(QB), dB(Pa), ¢5(Q4), Eap) with
Eap = Eo/(maPa+naQa, mpPp +npQp).

o (Ea.Ep,¢4(Pp),04(Qp). 65(Pa), ¢5(Qa), Ec) with
Ec = Eo/(m/yPa +nyQa, mpPp + npQp)

/ !/ / / :
where m'y,n'y, m’z, Ny are chosen randomly with the same re-
strictions as on my4,n4, mp,ng.

Decide from which distribution the tuple is sampled!

Table 2: SSDDH

Of course, these are theoretic considerations. Real-world implementation could cause
other problems which will be revealed in time. Since there are (almost) no Quantum
computers, there is very little experience in this field.

IMPLEMENTATION OF COSTELLO-LONGA-NAEHRIG: In [CLN16| the authors present a
full-fledged implementation of SIDH (see section 6 in loc.cit. for a compact summary).
Their choices for the parameters are: £4 = 2,¢g = 3 and p = 237 .32 — 1. They use
the elliptic curve Ey/F,2 given by

Ey:yt=a2+x

which is a supersingular Montgomery curve. The generators P4, Q4 and Pg,Qp are also
given explicitly. The great benefits of their work can be summarized as follows:

e High-Speed Performance: 2.8 times faster than previous proposals which brings it
into the range for practical use.

e Constant-Time Executions: this is important against side-channeling attacks.

e 128 Qubits quantum security and 192 Bits of classical security with a 564 Byte
public key size.

Another interesting feature which they present in their article is the possibility to easily
partner the SIDH with the classical ECDH. This hybrid scheme would be even stronger
against classical attacks on a little extra cost. Of course, they do not use the same

supersingular Montgomery curve for ECDH which is vulnerable to the Weil-pairing attack
since supersingular elliptic curves have small embedding degrees (see here, Appendix A).
They also propose a strategy to validate public keys in unauthenticated environments.
In ECDH this is a little effort - one has to check whether a point lies on the given elliptic
curve which can be done fast. For isogenies a more expensive computation is needed.

In comparison to other quantum-secure algorithms the public key size of only 564
Bytes — and it can even be smaller [CJLT16] — makes their SIDH implementation very
attractive and encourages to further studies in PQC.

References

[BL95] D. Boneh and R. J. Lipton, Quantum cryptanalysis of hidden linear functions,
Advances in cryptology - CRYPTO ’95, Springer-Verlag, 1995, pp. 424-437.

[CJLT16] C. Costello, D. Jao, P. Longa, M. Naehrig, J. Renes, and D. Urbanik, Efficient
compression of SIDH public keys, Cryptology ePrint Archive, Report 2016/963,
2016, http://eprint.iacr.org/2016/963.

[CJS14] A. Childs, D. Jao, and V. Soukharev, Constructing elliptic curve isogenies in
quantum subexponential time., J. Math. Cryptol. 8 (2014), no. 1, 1-29.

[CLN16| C. Costello, P. Longa, and M. Naehrig, Efficient algorithms for supersingu-
lar isogeny Diffie-Hellman, Cryptology ePrint Archive, Report 2016/413, 2016,
http://eprint.iacr.org/2016/413!

[Deu85| D. Deutsch, Quantum theory, the Church-Turing principle and the universal
quantum computer, Proceedings of the Royal Society of London Series A 400
(1985), 97-117.

[DJP14] L. De Feo, D. Jao, and J. Plat, Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies., J. Math. Cryptol. 8 (2014), no. 3, 209—
247.

[Sho97| P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer, STAM J. Comput. 26 (1997), 1484-1509.

[Was08|] L. C. Washington, Elliptic Curves: Number Theory and Cryptography, Discrete
Mathematics and Its Applications, Chapman and Hall/CRC, 2008.

http://blog.coinfabrik.com/wp-content/uploads/2016/06/some_comments_on_the_security_of_ecies_with_secp256k1.pdf
http://eprint.iacr.org/2016/963
http://eprint.iacr.org/2016/413

	Introduction
	The Power of Quantum Algorithms – Two Examples
	Supersingular Isogenous Diffie-Hellman Protocol
	Security and Performance Aspects of SIDH

