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1 Introduction

In this article we attempt to concisely discuss some security aspects of the widely used
encryption scheme ECIES – Elliptic Curve Integrated Encryption Scheme – with the
secp256k1 curve as it is currently implemented in Ethereum. This encryption scheme
is a hybrid scheme, meaning that it establishes a shared secret key which is used in a
symmetric algorithm for both encryption and decryption. Our focus here will be on the
security aspect of ECIES during the key exchange procedure which takes place on an
open network.
The security of ECIES assumes the intractability of a variant of the decisional Diffie-
Hellman problem. This is one of the standard mathematical problems in elliptic curve
cryptography (ECC) along with the discrete logarithm problem and the computational
Diffie-Hellman problem. We will review how these problems are related to each other
and the approaches that are known to solve the decisional Diffie-Hellman problem. We
illustrate the different methods of attack with the secp256k1 curve implementation of
ECIES, the curve recommended by the SEC Group and which is currently used in Bitcoin
and Ethereum. A quick overview of the secp256k1 curve can be found for example in
[BL13] or [May16].

2 The ECIES Encryption Scheme

The ECIES is the elliptic curve version of the encryption scheme proposed by M. Ab-
dalla, M. Bellare, and P. Rogaway in [ABR01]. As mentioned in the introduction, it is
a hybrid public key encryption scheme, and employs the Diffie-Hellman protocol over
elliptic curves to establish an encryption key.

2.1. Some Background on Elliptic Curves. Let Fq, q = pn a prime power, be a finite
field, e.g., Fp = Z/pZ for n = 1. An elliptic curve (in short affine Weierstrass form) E
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over Fq is the set of solutions of an equation

E : y2 = x3 +Ax+B (A,B ∈ Fq)

satisfying the condition 4A3+27B2 6= 0 to ensure that the curve E is smooth. When we
consider the field Fq for the coordinates, the set is given by

E(Fq) := {(x, y) ∈ Fq × Fq | y2 = x3 +Ax+B}.

The fact that a line L in the (x, y)-plane intersects E in three points allows us to define
an operation ‘P1 + P2’ ∈ E(Fq) for any P1, P2 on E(Fq), with properties similar to +
in the integers Z. The group defined by the curve E and this operation forms the basis
for elliptic curve cryptography (see e.g. [Was08] for more informations). A convenient
notation in this context is to define the scalar multiplication by

aP := P + . . .+ P︸ ︷︷ ︸
a−times

∈ E(Fq)
(
a ∈ Z, P ∈ E(Fq)

)
.

In this paper, we will work with the following assumption:

Set-up: Let E/Fq be an elliptic curve over Fq with q = pn. We assume that the order
of the group E(Fq) is

#E(Fq) = r

for some prime r.

2.2. The Scheme of ECIES. (Reference [BSS05], chapter I and III). The ECIES public-
key encryption scheme is standardized in ANSI X9.63, ISO/IEC 15946-3, IEEE P1363a,
NESSIE, NSA SUITE B, and SEC 1 v2. Ethereum follows the version specified in SEC
1 v2, section 5.1 (see [Res09]).
ECIES uses three ingredients, and there are many choices for each one (see Ethereum’s
choices here).

(a) a key derivation function KDF : E(Fq) −→ {0, 1}l mapping a point Z to a bit
string of length l. A key KDF(Z) is divided further into two strings k1, k2 such
that KDF(Z) = (k1||k2) where || denotes concatenation. k1 is used as master key
for symmetric encryption and k2 for authentication. (Ethereum uses, if unspecified,
PBKDF2 with hash function SHA256 as key derivation function).

(b) a symmetric key encryption scheme which includes an encryption and a decryption
function ENCk1/DECk1 (Ethereum uses AES128/256).

(c) a message authentication code MACk2 : {0, 1}∗ −→ {0, 1}∗ to prevent man-in-the-
middle attacks (Ethereum uses HMAC with hash function SHA256).

Suppose we have two users, U1 and U2, and U1 wants to send a message m (an arbitrary
bit string) to user U2. Therefore, they agree publicly on an elliptic curve E/Fq and a base
point P ∈ E(Fq) of order r. They make their choices for ingredients (a), (b), and (c).
User U2 chooses a secret a ∈ Z as his private key and publishes his public key Q = aP .
Then:
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Encryption:

I. U1 chooses a random integer k ∈ {1, . . . , r − 1}.
II. U1 computes R = kP and Z = kQ.

III. U1 derives (k1||k2)← KDF(Z), where || denotes concatenation.
IV. U1 computes C = ENCk1(m) and t = MACk2(C). User U1 then sends

(R,C, t).

Decryption:

I. U2 computes Z = aR.

II. U2 derives (k1||k2)← KDF(Z).

III. U2 computes t′ = MACk2(C). If t′ 6= t then U2 rejects the ciphertext.

IV. U2 computes m = DECk1(C).

We see that the secret key Z shared by U1 and U2 is generated by the Diffie-Hellman
public key exchange protocol (Z = a(kP ) = k(aP )). Note that some variants of ECIES
use point compression, i.e., the algorithm continues only with the x-coordinate of Z =
(xZ , yZ). This leads to smaller key size, but steps must be taken to eliminate the resulting
malleability problems.

2.3. The Provable Security of ECIES. Encryption schemes should be capable of resisting
an indistinguishable adaptive chosen ciphertext attack (IND-CCA) in the standard model
in order to be called safe. In an IND-CCA attack, the attacker can decrypt ciphertexts
and learn about the algorithm. The attacker gives two plaintext messages m0 and m1

to a challenger who chooses one at random and returns its encryption. The attacker can
also consult the decryption oracle about more texts. She then has to guess whether the
challenger has given her the encryption of message m0 or m1. If the attacker cannot
do this with a significantly higher probability than 1/2, the encryption scheme is called
IND-CCA secure. The mathematically precise definition of this security notion can be
found e.g. in [BSS05], chapter III, or [HK10]. ECIES is IND-CCA secure in the standard
model if:

(a) The hashed decisional Diffie-Hellman assumption holds true on the elliptic curve
E. (Please see the following section for details).

(b) The security of the symmetric encryption model is guaranteed.

(c) The security of the authentication MAC scheme is guaranteed.

The security of the symmetric encryption scheme and the MAC scheme is beyond the
scope of this paper. We focus on the hashed decisional Diffie-Hellman problem on elliptic
curves.
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3 Security of ECIES

A signature scheme is secure if no one can sign for someone else. It is not as easy to
determine when an encryption scheme is secure. If a ciphertext cannot be decrypted
completely but allows one to guess the general topic it is talking about, should this be
called ‘breaking the scheme’ or not? Mathematical problems can be used to model the
different levels of security. The most common mathematical assumptions in security
proofs in ECC are listed in Table 1. In this table, the expression ‘A (adversary) has no
advantage’ basically means that the probability of an attacker solving or deciding the
corresponding problem correctly in polynomial time is negligible (see [HK10] for a precise
definition).

Discrete Logarithm
Assumption
(EC-DL)

A has no advantage in solving:
Given P,Q ∈ E(Fq), find a ∈ Z, such that
Q = aP .

Computational Diffie-
Hellman assumption
(EC-CDH)

A has no advantage in solving:
Given aP, bP ∈ E(Fq), a, b ∈ Z, compute
abP .

Hashed Diffie-
Hellman assumption
(EC-HDH)

A has no advantage in deciding:
Given aP, bP ∈ E(Fq), a, b ∈ Z, and α an
l-bit string. Decide whether α = KDF(abP ).

Decisional Diffie-
Hellman assumption
(EC-DDH)

A has no advantage in deciding:
Given aP, bP , and cP ∈ E(Fq) on E with
a, b, c ∈ Z. Decide whether cP = abP .

Table 1: Conventional assumptions in security proofs against an adversary A.

3.1. Relationships Between Conventional Assumptions in ECC. To understand the com-
plexity of the assumptions in Table 1, lets think a bit about their implications. For
example, EC-CDH implies EC-DL, because, if you can solve discrete logs, you can also
solve the computational Diffie-Hellman problem: Choose aP and solve the discrete loga-
rithm to get a. Then compute a(bP ) = abP . And similarly, both EC-DDH and EC-HDH
imply EC-CDH, and if the key derivation function is a cryptographic hash function,
EC-DDH implies EC-HDH (see Figure 1).

It is more difficult to go in the opposite direction. For example does being able to
solve the computational Diffie-Hellman problem in polynomial time imply that one can
solve discrete logarithm problems in polynomial time? In [MW99] Maurer and Wolf
were able to prove that it is possible to go from DLP to CDH in polynomial time for
most cryptographic groups. Maurer and Wolf’s algorithm is applicable for most of the
elliptic curves recommended by the SEC Group, including the secp256k1 curve, as
demonstrated in [MSV04] and [Ben05].
Joux and Nguyen show in [JN03] that an elliptic curve that is safe for EC-CDH will not
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EC-DL EC-CDH EC-DDH

EC-HDH

KDF = crypto hash function

Figure 1: Implications for most elliptic curves. Read ‘X → Y ’ as ‘assumption X implies
assumption Y ’.

necessarily be safe for EC-DDH (though in the generic group model these assumptions
are equivalent; see [Bon98]). The remaining two implications do not hold (see [GKR04]).
Conclusion: The decisional Diffie-Hellman assumption (used in encryption schemes)
is stronger than the discrete logarithm assumption (used in signatures). The hashed
decisional Diffie-Hellman assumption (ECIES) depends on the choice of the hash function
which is used for KDF. If KDF is a cryptographic hash function, it is weaker than the
decisional Diffie-Hellman assumption; it is always stronger than the discrete logarithm
assumption.

3.2. Security of ECIES with secp256k1. One strategy to solve the hashed decisional
Diffie-Hellman problem (and break ECIES) is to solve the discrete logarithm problem.
And, almost all known solutions for the decisional Diffie-Hellman problem on elliptic
curves rely on discrete logarithms (see [GG16], p. 3). The only exceptions are some
cases in which the Weil pairing can be used to solve the decisional Diffie-Hellman problem
directly. To make the second approach work one needs the embedding degree of the elliptic
curve to be 0 or 1 (see [Ver04]). Since the embedding degree of the secp256k1 curve is
much greater than 1 (see e.g. [BL13]), it is not vulnerable to this type of attack. Those
who are interested in the math behind this attack can see Appendix A. The secp256k1
curve satisfies the EC-DL assumption, as discussed in [May16], which makes it safe
against the first strategy.
Conclusion: In Ethereum, the ECIES is implemented with the secp256k1 curve. Al-
though the security of ECIES is based on EC-HDH, it is enough to assume EC-DL for
this choice of curve. For the secp256k1 curve the EC-DL assumption holds (see e.g.
[May16]). To read more about attacks targeting implementation issues with secp256k1
please see Bernstein and Lange’s website [BL13] or our previous paper [May16].
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4 Further Remarks

Modern cryptography seeks encryption schemes which are both efficient and secure, and
require as few assumptions as possible. It is difficult to satisfy all three of these conditions.
We mention three efficient schemes (secure in the standard model) below:

· Boyen-Mei-Waters 2005 (only secure under the bilinear Diffie-Hellman assumption)

· Kiltz 2007 (under the Gap HDH assumption)

· Hanaoka-Kurosawa 2010 (under the intermediate HDH assumption)

Less efficient schemes but secure in the standard model under weaker assumptions:

· Cash-Kiltz-Shoup 2008 (under the CDH assumption)

· Haralambiev-Jager-Kiltz-Shoup 2010 (under the CDH assumption)

See for example [HK10] for a more detailed overview of this research field.

A Attack with Weil Pairing

One attack on the decisional Diffie-Hellman problem uses the Weil pairing. The r-torsion
points E[r] of an elliptic curve E are all points on E which satisfy rP = P + . . .+P = O,
where O denotes the neutral element. The coordinates of these points are not necessarily
defined over Fq, but they are in a field extension Fqm of Fq. The smallest integer m
satisfying E[r] ⊆ E(Fqm) is the embedding degree. The Weil pairing is a non-degenerate
bilinear map

er : E[r]× E[r] −→ Fqm .

What is key here is the bilinearity of the Weil pairing which we can exploit to solve
the decisional Diffie-Hellman problem as follows: given aP, bP , and cP on E. To decide
whether or not abP = cP one could try the following: since

er(aP, bP ) = er(P, bP )
a = er(P, P )

ab and er(P, cP ) = er(P, P )
c

it suffices to check whether

er(aP, bP ) = er(P, cP ), (1)

but only if er(P, P ) 6= 1 which is not the case for P ∈ E(Fq). The solution to this
problem is to use an endomorphism ϕ : E −→ E with the property er(P,ϕ(P )) 6= 1
and replace bP and cP in the second argument of the Weil pairing in (1) by bϕ(P ) and
cϕ(P ), respectively. The endomorphism ϕ is called a distortion map. Note that one does
not even have to solve a DLP in Fqm ! Such maps exist for ordinary elliptic curves only
if the embedding degree is less than or equal to 1 (see [Ver04] or [GR04]) .
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